これからの季節に親子でハイキング! >>

私は数学が苦手な文系大学生です。最近「地域分析」という本を読んでいるのですが、たびたび数式を「対数変換すると・・・」と言う風に話が進みます。対数変換をすることの意味がわからないので内容が理解できません。

まず、対数変換とは何なのか?対数変換を行なうと何がどのように変わるのでしょうか?
また、一般的に対数変換とはどのような目的で行なわれるのでしょうか?

ということを文系の学生にわかりやすく教えていただけないでしょうか。
対数変換の内容を理解していないため、質問が的を得ていないかもしれませんが、よろしくお願いします。(また、ここで説明できるような内容でなければ、その旨をお伝えください。)

このQ&Aに関連する最新のQ&A

A 回答 (3件)

まず、ここで論じられている「対数」が「常用対数」を意味する


ことを前提として話を進めましょう。

対数に変換するということは、ある数値を
任意の底の値の指数値で表すことを意味します。
具体的に言うと(ここでは常用対数に限定することにしたので)、
ある数値が10(これが常用対数の底の値)の何乗であるのか
ということです。

たとえば、100という数値の常用対数を取ると、
100は10の2乗ですから、「2」となります。
同様に1000は「3」、10000は「4」です。

このように表現すると、正の数値で1以下の小数から
万や億などの非常に大きい値に散らばる数値サンプルを
整理したり表現するのに非常に便利です。

また、対数にしてグラフを作ると、上記のように非常に
大きな数(または0.00000・・・・のように非常に小さい数)
を限られた紙面上でプロットする事ができます。
もしそのプロットした結果が直線になった場合、
その直線の傾きでサンプルの近似式を導き出すこともできます。

具体的例を挙げると、身近なものではpH値。
これはある液体の単位量あたりどのくらい水素イオンが
含まれるかを対数表現したものです。
(厳密には、モル濃度で表した水素イオン濃度の逆数の常用対数)

まとめると、対数は小数から数万・億などの広範囲に散らばる
数値を整理するために使われる道具とお考えになられたら
良いと思います。
    • good
    • 37

 地域分析という本がどのような本かは知らないのですが、対数変換することについて答えたいと思います。


 自然科学分野(物理学や化学や工学等)において、実験を行うと相関式(関係式)が得られます。
 すべてではないのですが、y=Ax^B(AかけるxのB乗)のような式が得られることがあります。いわゆる指数関数というやつです。指数関数は、対数関数と関係があります。簡単に言えば、指数関数を変形したものが対数関数と思ってもらえば良いと思います。その逆も同じです。
 
 ここで対数というのは、logxなど言う形をしたものです。グラフの形は、記憶の忘却曲線を思い描いてください。日にち(x)が経てば、記憶量(y)がどんどん減っていきますね。

 y=Ax^Bの両辺に対数を取ると
 logy=log(Ax^B)
=logA+logx^B
=logA+Blogxと変形できます。
ここで、両対数グラフ用紙(縦軸も横軸も対数目盛りが打ってあります)に点を打っていきます。
 そうすると直線が引ける場合があります。この直線を引くことによって傾きや切片が分かります。このことから、
AやBを求めることができます。
 
 このようにy=Ax^Bという指数関数を対数変換することによって係数や指数A,Bを求めたりすることができるわけです。工学や理学等では、日常的に行われています。
 少し難しかったかもしれませんね。
 
    • good
    • 5

私は読書嫌いの人間ですので「地域分析」と言う本を読んだことがありません。


想像の域を出ませんが、分析と言うからには何かの相関を取っているものとして話を進めます。
関係がある2つの変数について対数を取ると指数部(何乗になっているか)が傾きになって現れます。(例えば正方形の辺の長さと面積の関係は2乗になっているので2、立方体の体積の場合は3といった感じ。)
あくまでも想像ですが(経済学の知識もありませんのでこのような統計が成り立つかも知りません。)、人口と生産高の対数の対数の傾きを比較すると、人口が2倍の場合、生産高が2倍で当たり前(この場合、対数の傾きは1)、人口が多い場合に生産性が高い(生産能力が上がる)場合などには傾きが1よりも大きくなります(はずです)。
こんな感じでしょうか?的外れだったらごめんなさい。
    • good
    • 4

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q回帰分析の時に対数をとる意味は?

現在、計量経済学の授業で、
回帰分析、最小二乗法について勉強しているのですが、
たまに先生がデータの対数をとって回帰分析をするのですが、
どうして対数をとるのかよくわからないんです。

一応、弾力性を一定とする時や、非線形の関数を
線形にする時に使うらしいことまでは、
わかっているのですが
(でも、それすら怪しいです。間違っていたら訂正してください…)

どうして、対数をとるとそのようなことができるのか
よくわからないんです。

ご存知の方がいらっしゃれば、アドバイスお願いします。
参考書籍・参考サイト等の紹介でもかまいません。

Aベストアンサー

追加の質問の件ですが,ある回帰式について,その説明変数でよいか,その関数形でよいか,ということを統計的に検証する手続きは,特定化の検定(specification test)として確立しています。

よく用いられる例が,Hausman検定やRamseyのRESET検定です。両者は,対立仮説などが異なるので,何を目的とするかで一長一短があり使い分けられます。

ただし,そうした検定はそれなりに難しい(大標本の検定なので,確率極限 plim の概念が必要)ので,学部の4単位くらいの内容ではそこまで至らないでしょう。学部の上級講義か,大学院の修士課程で学ぶ内容ですね。ちゃんとした教科書でも,かなり後の方に説明してある検定です。

ただ,対数をとったモデルと,とらないモデル,どちらの方が望ましいかというだけだったら,上の一般的な定式化の検定よりもずっと簡単な問題で,より簡単なBox-Cox変換で十分です。これだと,入門的な教科書でも手短かに書いてあるでしょう。

なお,その先生の説明を直接聞いたわけではないですが,「対数をとれば,どんな非線形の関係でも,線形回帰式として推定できる」と思われたのなら,誤解を招く説明ですね。

実際,対数をとるだけでは線形にならないような非線形の関係を推定する手法として,非線形最小2乗法とか一般化モーメント法(GMM)とかが用いられているんですからね。これらも,中級以上の教科書なら説明があるでしょう。

追加の質問の件ですが,ある回帰式について,その説明変数でよいか,その関数形でよいか,ということを統計的に検証する手続きは,特定化の検定(specification test)として確立しています。

よく用いられる例が,Hausman検定やRamseyのRESET検定です。両者は,対立仮説などが異なるので,何を目的とするかで一長一短があり使い分けられます。

ただし,そうした検定はそれなりに難しい(大標本の検定なので,確率極限 plim の概念が必要)ので,学部の4単位くらいの内容ではそこまで至らないでしょう。学部の...続きを読む

Q自然対数に変換する意味がわかりません

ある化学分析の本に、2組の時系列データについて、変動パターンの相関係数を求めるのに、移動平均との比(×100)を自然対数に変換して相関係数を求める、との説明がありました。こういう場合、自然対数に変換するのにどういう意味があるのでしょうか?

Aベストアンサー

以下の記述は、厳密ではありません。大体の雰囲気という程度で読んでください。

時系列データを分析するときは、クロスセクションデータとは違った世界で考えることが多いのです。一番大きな違いは、次のことだと思います。

[1] クロスセクションデータでは、すべてのデータが同一の分布に従う確率変数からの実現値(見本)とみなされることが多い。

[2] 時系列データでは、各時点のデータは、それぞれ別の分布に従う確率変数からの実現値とみなされることが多い。

ただ、[2]の想定だけではあまりに漠然としすぎて分析になじまないので、普通、次の仮定を置きます。

[3] 時系列データでは、各時点のデータは、弱定常過程(単に「定常過程」と言うこともある)に従う確率過程からの実現値(見本過程)とみなされることが多い。

弱定常過程の意味は、他の参考書をみていただくとして、その重要な特性に次のことがあります。

[4] 各時点の分散は、時点に依存しない一定値である。

ここからが、本題です。もし、扱っているデータが次の性質を持っているように見えたとします。

[5] データの誤差あるいは分散が、データの値に比例する(例えば、10の値を持つデータの分散が1だったとすると、100の値を持つデータの分散は10になる)。

この[5]のような性質を持つデータは、現実によく見かけるタイプです。さらに、このデータが時間とともに傾向的に増加や減少しているときは、[4]の仮定と矛盾することになります。すると、このままでは弱定常過程にならないので、通常の時系列データの分析手法(相関分析を含む)がほとんど使えないことになってしまいます。

で、このような場合、よく使われるテクニックが、対数変換です。[5]のようなデータも、対数変換すれば、[4]と矛盾しなくなるからです。

よって、結論は、次のようになります。

[6] 時系列データを対数変換したほうが良いかどうかは、単に変動のレンジが大きいかどうかではなく、誤差or分散がデータの値に比例しているかどうかで判断する。

以下の記述は、厳密ではありません。大体の雰囲気という程度で読んでください。

時系列データを分析するときは、クロスセクションデータとは違った世界で考えることが多いのです。一番大きな違いは、次のことだと思います。

[1] クロスセクションデータでは、すべてのデータが同一の分布に従う確率変数からの実現値(見本)とみなされることが多い。

[2] 時系列データでは、各時点のデータは、それぞれ別の分布に従う確率変数からの実現値とみなされることが多い。

ただ、[2]の想定だけではあまりに漠然とし...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q相関係数についてくるP値とは何ですか?

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

Aベストアンサー

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場...続きを読む

QExcelでLog10を自然数に直すには

Excelで=Log10(1000)で常用対数が計算できますが、逆に対数を自然数(3を1000)に直す計算式はどうするのでしょう。ExcelのHelpにもGooでも検索したがわかりません。

Aベストアンサー

=10^3 で、1000 になります。
また、Log10(2) ≒ 0.3 ですが、
=10^0.3 ≒ 2 です。

つまり、=10^(常用対数)で、元の数が計算できます。
あと、この場合、対数に対して、元の数は、「真数」と呼びます。

Q常用対数を使うと何が便利なんですか?

常用対数の実用性についてわかりやすく教えてください。
特にデシベルとの関連について・・・掛け算が足し算になるとか本には書いてあるんですが具体的な例を示していただければありがたいです。

Aベストアンサー

もちろん計算が楽になるという利点がありますが、そもそも対数は比較するためのものです。

 たとえば、私たちがある二つの学校の人数が、ともに10人増えたと言った場合、この二つが同じ意味かというと、そうとは言い切れませんね。
 A校は、昨年10人しかいませんでしたが、B校は1000人の生徒がいました。
 A校は、2倍に増えたのですが、B校は0.1%しか増えていません。

 今年は、お小遣いが10000円増えたといっても、大して喜ばないA君と、逆立ちして喜ぶB君がいる。なぜならA君は先月まで10000円だった、B君は100万円貰っていた。

 では、それぞれの生徒数やお小遣いを対数で表してみると
A校は、1→1.3010  差は0.3010
B校は、3→3.004  差は0.004
A君は、4→4.3010  差は0.3010
B君は、6→6.004  差は0.004
 差を比較するより、何倍になったかを比較するほうが適切なことが分かると思います。A校の思いと、A君の思いは同じことがこれで分かるね

>掛け算が足し算になるとか本には書いてあるんですが
 は数学的な意味ですね。
 たとえば10倍したものを1000倍すると、10000倍ですが、対数で考えると1+3=4ですから、10^{4}で10000
 10^{1} * 10^{3} = 10^{1+3} = 10^{4}
 10の倍数だけでなく、すべての数が10^{x}という形で表せる。このあたりは
冪乗 - Wikipedia ( http://ja.wikipedia.org/wiki/%E5%86%AA%E4%B9%97 )
対数 - Wikipedia ( http://ja.wikipedia.org/wiki/%E5%AF%BE%E6%95%B0 )
などで勉強してね。

>特にデシベルとの関連について
 実は、人間の感覚も対数なのです。
 人は、音の大きさは、エネルギーの大きさが10倍になっても2倍になった要に感じる。でないと、1万倍の音を聞いたら頭が壊れてしまう。一万倍になっても4倍の大きさにしか感じない。
 明るさだって、光子一個でも感じることができるのに、それが数億個になっても、目が焼ききれない。


 

もちろん計算が楽になるという利点がありますが、そもそも対数は比較するためのものです。

 たとえば、私たちがある二つの学校の人数が、ともに10人増えたと言った場合、この二つが同じ意味かというと、そうとは言い切れませんね。
 A校は、昨年10人しかいませんでしたが、B校は1000人の生徒がいました。
 A校は、2倍に増えたのですが、B校は0.1%しか増えていません。

 今年は、お小遣いが10000円増えたといっても、大して喜ばないA君と、逆立ちして喜ぶB君がいる。なぜならA君...続きを読む

Qデータが正規分布しているか判断するには???

初歩的なことですが。。急いでいます。
おわかりになる方 教えてください。
サンプリングしたデータが正規分布しているかどうかを確認するにはどうすればよろしいでしょうか。
素人でも分かるように説明したいのですが。。
定性的にはヒストグラムを作り視覚的に訴える方法があると思います。今回は定量的に判断する方法を知りたいです。宜しくお願いします。

Aベストアンサー

>機械的に処理してみるとできました。
>でも理屈を理解できていません。
 とりあえず、理屈は後で勉強するとして、有意水準5%で有意差あり(有意確率が0.05以下)であれば、正規分布ではないと結論づけてお終いでいいのではないですか。
>この検定をもっと初心者でもわかりやすく解説しているサイト等ご存じありませんか。
 私が知っている限りでは、紹介したURLのサイトが最も丁寧でわかりやすいサイトでした。
>データの区間を分けるときのルール等ありますでしょうか。
 ヒストグラムを作成する場合、区間距離、度数区分数は、正規的なグラフになるように試行錯誤で行うことが多い(区間距離や度数区分数を本来の分布に則するようにいろいろ当てはめて解釈する。データ個数の不足や、データの取り方、または見かけ上の分布によりデータのばらつきが正しく反映されて見えないことがあるため)のですが、度数区分数は、機械的に、
=ROUNDUP(1+LOG10(データ個数)/LOG10(2),0):エクセル計算式
で区分数を求める方法があります。
 また、区間距離は、=ROUND((データの最高値-最低値)/(度数区分数値-1),有効桁数)で求め、区分の左端は、
=ROUNDUP(データの最低値-区間距離/2,有効桁数)
右端は=ROUNDUP(データの最高値+区間距離/2,有効桁数)
とします。
 区間がと度数区分数が出たら、その範囲にあるデータ数を数えて、ヒストグラムができます。
 
>最小側、最大側は 最小値、最大値を含んだ値としなければならないのでしょうか。
 ヒストグラム作成の処理に関しては、上記を参考にしてください。
 その前に、データの最小値と最大値が、正しくとれたデータか検討するため、棄却検定で外れ値が存在するか否かを検定し、外れ値が存在しないと結論づけられたら、正規分布の検定を行ってみてください。もし外れ値が存在する可能性があれば、そもそも、そのデータの信頼性が失われます。サンプリング手法の再検討(データの取り方に偏りがなかったか、無作為に設定してデータを取っていたか等)をして、再度データを得る必要があります。また、そもそも検定する以前に、データ数が少ないと判断が付かなくなってしまいますので、データ数は十分揃える(少なくとも20~30個)必要もあります。

>機械的に処理してみるとできました。
>でも理屈を理解できていません。
 とりあえず、理屈は後で勉強するとして、有意水準5%で有意差あり(有意確率が0.05以下)であれば、正規分布ではないと結論づけてお終いでいいのではないですか。
>この検定をもっと初心者でもわかりやすく解説しているサイト等ご存じありませんか。
 私が知っている限りでは、紹介したURLのサイトが最も丁寧でわかりやすいサイトでした。
>データの区間を分けるときのルール等ありますでしょうか。
 ヒストグラムを作成する場合、区...続きを読む

Q片対数グラフで直線になる理由

 学校の化学実験で片対数グラフを使うことがよくあるのですが、
そのとき、片対数グラフで直線になるようなものがよくあります。
(アレニウスの式など)

 で、ここからが疑問なのですが、
なぜ底が10の片対数グラフで直線になるのでしょうか?
 毎回実験がある度に考えているのですが、
考えれば考えるほど混乱してきたので質問します。

理論(あるいは実験)から導かれる式:
 y=A*(10^ax)+B ・・・(1)
を変形すると
 logy=ax+b ;直線
となるからという説明を求めているわけではないです。

 底がeであった方が、数学的にはすっきりした形だと思うのです。
(当然グラフは書きにくいでしょうけど・・・)

 疑問を換言すれば、
なぜ(1)式では10^Xの形で表わされるのか?
(なぜe^Xの形にならないのか?)
ということです。

我々が10進法を使っているからでしょうか?

化学のカテゴリで質問するべきなのかちょっと疑問なのですが、
よろしくお願いしますm(__)m

Aベストアンサー

具体的にアレニウスの式の場合を考えてみましょう。
 A=A0exp(-E/kT)  (1)
(1)の自然対数をとると
 lnA=lnA0-(E/kT) (2)
縦軸にlnA、横軸に1/Tをとると傾き-E/kの直線となりますね(いわゆるアレニウスプロット)。縦軸を常用対数に変換するには1/log(e)=0.4343という換算係数をつかって
 lnA=logA/log(e)≒0.4343logA  (3)
となり、これから
 logA≒2.30×lnA (4)
となってloaAの尺度はlnAの尺度を約2.3倍したもの(logAの縦軸はlnAの縦軸を2.30倍引き伸ばしたもの)であることが分かります。このことはwinterofmeeiさんが言われている
>これは単に尺度が違うだけで、本質は同じです
ということですね。対数の場合、差は割算になりますから
 logA-logB=log(A/B)=2.30ln(A/B)  (5)
従って2点A,Bの縦軸の差はグラフの尺度さえキチンとしておけばどちらでプロットしてもよいということになります。以上、愚だ愚だ書きましたがお分かりいただけましたか(←あまり自信がないが、、、)。参考URLも参照して考えてみてください。

参考URL:http://ww9.tiki.ne.jp/~fusou/koutou/3m/main3.htm

具体的にアレニウスの式の場合を考えてみましょう。
 A=A0exp(-E/kT)  (1)
(1)の自然対数をとると
 lnA=lnA0-(E/kT) (2)
縦軸にlnA、横軸に1/Tをとると傾き-E/kの直線となりますね(いわゆるアレニウスプロット)。縦軸を常用対数に変換するには1/log(e)=0.4343という換算係数をつかって
 lnA=logA/log(e)≒0.4343logA  (3)
となり、これから
 logA≒2.30×lnA (4)
となってloaAの尺度はlnAの尺度を約2.3倍したもの(logAの縦軸はlnAの縦軸を2.30倍引き伸ばしたもの)であることが分かります。...続きを読む

Q自然対数をとる?とは・・・

y=x^x 両辺の自然対数をとると logy=xlogx
これはどういうことなのかさっぱりです。

ログについては、たとえばlog(小さい2)8 なら2を何乗かしたら8になります ってことは2を3乗すると8だから log(低?が2)8の答えは3だ!
 ということなどは分かるのですが、一番上の式の意味と自然対数をとるという意味が分かりません。
「自然対数」とか「常用対数」とか言葉はしっているのですが、内容がいまいち分からなくて・・・
お願いします!!!

Aベストアンサー

2^3=8 → log(2)8=3 
左の等式において、両辺にlog(2)をつけてみると
  log(2)2^3=log(2)8
  3log(2)2=log(2)8
     3=log(2)8  と最初の右の等式と同じに変形できます。

このように、等式(両辺とも正)は、両辺を底が同じ対数の真数に入れる
ことができます。
底がeのとき、自然対数をとるといってます。

だから、y=x^xはeを底とする対数をとって、
 log(e)y=log(e)x^x=xlog(e)x
とできます。(普通、(e)は省略されますが)

QLogをとる意味は?

2変数の関係(散布図など)を調べる時、よくLogをとり計算しています。統計の分野で正規性のないデータのLogをとり、無理やり正規化して統計手法を使う・・このような方法で統計計算を行っても良いのでしょうか?結構多用してるのですが、いまいち自信が持てません。

Aベストアンサー

なんの根拠もなくlogをとっても仕方ないです。
logをとって正規分布になるってことは、もとの分布は対数正規分布にしたがっているってことですね。そう言える根拠があるのであればOKです。
実際上は、その確率変数が下のような条件に当てはまってればOKです。

ある確率変数Xが対数正規分布に従うためには、大数の法則によれば、
・確率変数Xは、たくさんの小さい要素の和としてあらわされるものである。
・個々の小さい要素の大きさが、その時点での和Xに比例する
という条件が必要です。(他の可能性もないとは言えないが、実際の統計解析ででてくる対数席分布はまず間違いなく、この仕組みで生じている)

例えば、ある国に住んでいる人の財産の分布は対数正規分布になると言われていますね。(貧乏な多数の人と、超お金持ちの極小数の人)
財産てのは、その人がそれまでにしたたくさんの小さな仕事の報酬の和なわけです。
で、個々の小さな仕事の報酬ってのが、その時点での財産に比例する、つまり
「金は金持ちのところに集まる」
が正しいならば上の条件を満たし、財産の分布が対数正規分布になります。これは、実際に言えそうな気がしますね。

なんの根拠もなくlogをとっても仕方ないです。
logをとって正規分布になるってことは、もとの分布は対数正規分布にしたがっているってことですね。そう言える根拠があるのであればOKです。
実際上は、その確率変数が下のような条件に当てはまってればOKです。

ある確率変数Xが対数正規分布に従うためには、大数の法則によれば、
・確率変数Xは、たくさんの小さい要素の和としてあらわされるものである。
・個々の小さい要素の大きさが、その時点での和Xに比例する
という条件が必要です。(他の可...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング