大学入試問題です。
⑴nは2以上の自然数、r>0とき、
{1+r^(n-1)}/2≧{1+r+r^2+…+r^(n-1)}/nを示せ。
⑵等差数列a_1,a_2,a_3,…,a_nと、公比が正の等比数列b_1,b_2,b_3,…,b_nにおいて、a_1=b_1、a_n=b_n、a_1>0とすると
a_1+a_2+…+a_n≧b_1+b_2+…+b_nを示せ。
⑴は、帰納法かと考えましたがうまくいかないと分かり、解けませんでした。
途中式や考え方など、詳しく教えてくださる方、よろしくお願いします。
No.2ベストアンサー
- 回答日時:
(1)
n(1+rⁿ⁻¹)≧2(1+r・・・+rⁿ⁻¹) を示せば良い。
n=2 のときは自明。
nのとき、成立を仮定し、n+1の時を考える。
(n+1)(1+rⁿ)=n(1+rⁿ)+1+rⁿ=n(1+rⁿ⁻¹)+n(rⁿ-rⁿ⁻¹)+1+rⁿ
nのときの仮定から
(n+1)(1+rⁿ)≧2(1+r・・・+rⁿ⁻¹)+n(rⁿ-rⁿ⁻¹)+1+rⁿ
=2(1+r・・・+rⁿ)+n(rⁿ-rⁿ⁻¹)+1-rⁿ
したがって、n(rⁿ-rⁿ⁻¹)+1-rⁿ≧0 を示せばよい。
n(rⁿ-rⁿ⁻¹)+1-rⁿ=nrⁿ⁻¹(r-1)+1-rⁿ
=(1-r){-nrⁿ⁻¹+(1+r+・・・+rⁿ⁻²+rⁿ⁻¹)}
=(1-r){(1-rⁿ⁻¹)+r(1-rⁿ⁻²)+・・・+rⁿ⁻²(1-r)+0}
=(1-r)²{(1+r+・・・+rⁿ⁻²)+r(1+・・・+rⁿ⁻³)+・・・+rⁿ⁻²}
=(1-r)²{1+2r+3r³+・・・+(n-1)rⁿ⁻²}
r>0だから、右辺は0以上で、命題は帰納法により証明された。
(2)
na₁+{n(n-1)/2}a≧a₁(1+r+・・・+rⁿ⁻¹)
を示せばよい。
a[n]=b[n] から
a₁+(n-1)a=a₁rⁿ⁻¹
を使って
na₁+{n(n-1)/2}a=na₁+(n/2)(a₁rⁿ⁻¹-a₁)
=(a₁n/2)(2+rⁿ⁻¹-1)=(a₁n/2)(1+rⁿ⁻¹)
したがって、a₁>0 なので与式は
(a₁n/2)(1+rⁿ⁻¹)≧a₁(1+r+・・・+rⁿ⁻¹)
→ (1+rⁿ⁻¹)/2≧(1+r+・・・+rⁿ⁻¹)/n
となる。これは(1)で証明したので命題は成立。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 至急お願いします‼️今日私立大学入試で数学を受けてきたのですが、問題に納得できません。この問題、数列 9 2023/02/07 00:45
- 高校受験 数学の問題いくつか捨てても大丈夫?残り1ヶ月、点数が取れない教科ばっか勉強しても大丈夫? 高校受験 2 2023/01/07 17:55
- 国家公務員・地方公務員 公務員試験の数的処理で苦戦しています。 1 2023/01/30 08:56
- 数学 数2Bの数列の問題です。 自分は、 まず数列 an=ar^(n-1)と置き こちらの問題の、y= の 1 2022/07/07 16:26
- 数学 乗法公式の問題についてです。 (x-y)(2x+y)??? 2 2022/10/18 19:50
- 数学 ある大学の入試問題に a[1]=2, a[n+1]=1+1/(1-Σ[k=1→n]1/a[k]) で 4 2022/07/25 14:45
- Visual Basic(VBA) vba 等間隔の列に対しての計算 6 2022/05/17 20:15
- 数学 上三角行列のn乗の証明 2 2023/07/23 21:45
- 数学 中3の数学で写真の問題がどうしても解けません。 「図のADBさえ分かれば解ける。」 ↓ 「DACを知 1 2023/01/17 19:58
- 数学 原始関数の存在性の証明について 数学科の3回生です。院試の勉強でつまづいたので助けてほしいです。 R 6 2022/11/13 19:19
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【選手権お題その3】この画像で一言【大喜利】
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・ちょっと先の未来クイズ第6問
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数学の論理学的な質問なんです...
-
強い仮定、弱い仮定、とは
-
「逆もまた真なり」について
-
数学1Aの問題集で、疑問に思う...
-
数学の証明の問題です。
-
a,bが有理数として√6が無理数を...
-
背理法
-
nは自然数 n^2と2n+1は互いに素...
-
命題を証明せよとはどういう意...
-
a>0、b>0⇔a+b>0、ab>0
-
命題P、Qが共に真のとき Pなら...
-
数学的帰納法の根本的な疑問な...
-
数学の問題です! 教えてくださ...
-
下の式がaとbが0より大きい場合...
-
n=3の倍数ならば、n=6の倍数で...
-
数学。「次の命題の真偽を調べ...
-
何時間 何分 何秒を記号で表...
-
Ω(オーム)とΩ(オメガ)って同じ...
-
神社のおみくじに、「転居 さわ...
-
数学のハット、キャレットの意...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
n=3の倍数ならば、n=6の倍数で...
-
数学の背理法について質問です...
-
a>0、b>0⇔a+b>0、ab>0
-
強い仮定、弱い仮定、とは
-
命題「PならばQ」でPが偽ならば...
-
【命題が偽である場合の反例の...
-
カントールの対角線論法につい...
-
命題論理に関する英単語
-
加藤文元さんは自身のゴールド...
-
数学的帰納法の根本的な疑問な...
-
有理数を文字置き→互いに素な整...
-
青チャートに、「命題p⇒qの否定...
-
数学で出てくる十分性と必要性...
-
「逆もまた真なり」について
-
数学B漸化式です。 a1=1/5, an+...
-
xy=0ならばx=0またはy=0 の対偶...
-
高校数学です!m,nを整数とする...
-
nは自然数 n^2と2n+1は互いに素...
-
「逆は必ずしも真ならず」の証...
-
ウェイソン選択課題について悩...
おすすめ情報