
No.2ベストアンサー
- 回答日時:
> exist(x, y)
その通りならば、この問題は「s, tが与えられたときに(x+y)はどうなる?」という話だということ。もちろん、どんな(s,t)についても(x,y)は唯一存在し、だから(x+y)の値はひとつに決まる。x, y, (x+y)を勝手に選ぶことはできないんで、「範囲」なんて話が出る余地はない。つまりこの問題はナンセンスだ。(…ということをNo.1の回答が示しているんだけど、伝わらんだろうな。)
もしかして
∃s∃t(x=s+tかつy=s^2−t)
という問題じゃないのかなあ。ま、そうだとして、さらに実数に限定した話だとしてみると、
(x+y) = s^2 + s
というsに関する二次方程式から、sが実数になるような(x+y)の範囲A が決まる。(tの選びかたには制約がないので、(x+y)∈A でありさえすれば(x,y)は何でも良い。)
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 数学 同値変形 exist(x, y)[(x+y=2t+4)かつ(xy=9)] ⇔tの範囲 なのです 2 2022/07/07 23:45
- 数学 数学の証明問題について質問です。 今日私大入試があったのですが、AとBの共通部分となるxの範囲を求め 1 2023/02/10 15:27
- 数学 x>=0, y>=0のとき、√x+√y=1の曲線の長さを求める。 y=(1-√x)^2と変形すると、 1 2022/12/31 11:20
- 高校 三次関数のグラフにつきまして 3 2022/05/15 11:14
- 数学 高2 数2 3 2022/06/20 21:39
- 数学 難題集から 最大と最小 7 2023/02/22 19:36
- 数学 数学の参考書で「同値変形」という言葉が出てきたのですがどういう意味でしょうか? 調べても出てこなかっ 2 2023/06/28 18:31
- 数学 2次方程式の「(x-3)^2=4」を解くとき、 そのまま解くことも可能ですが A=x-3と置いて、A 3 2023/01/27 18:20
- 数学 全ての実数xについて、不等式x²+(k+2)x+(k+2)>0が成り立つような定数kの値の範囲を求め 5 2023/01/21 14:27
- 数学 判別式の使う時とか使わない時を教えて欲しいです。明後日テストがあるんですが、D=0の時とかグラフが浮 7 2022/11/19 12:44
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
y=tanx(0<x<π/2) の逆関数...
-
この超越方程式解の解き方
-
周期関数の問題
-
x^4+1-=0 の解
-
計算式 何%減少を教えてくださ...
-
見えない角の二等分線のやり方
-
解答が省略されている問題は解...
-
基本ベクトルi、j、k
-
直線と辺の違い
-
振動工学について以下の問題を...
-
y=√3分の1x+1とのなす角が4分の...
-
増加率の問題
-
△OABにおいて辺OAを2:3に内分す...
-
数IIの三角関数の問題です。 直...
-
☆に直線二本引いて三角形を10個...
-
これ角刈りですか?失敗されま...
-
平行四辺形ABCDの対角線の交点...
-
スイカの分割問題
-
二次関数y=x^2-mx-m+3のグラフ...
-
三角形ABCにおいてBCの中点をM...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
y=tanx(0<x<π/2) の逆関数...
-
虚数単位:i、この4乗根を求め...
-
x^4+1-=0 の解
-
数学 同値変形 exist(x, y) x=s...
-
2005年度東大文系の入試問題
-
数Ⅲ 微分 y=(3)√x^2 ←xの2乗...
-
同値変形や存在条件
-
式における否定の範囲について
-
三角比の2次方程式の解の個数...
-
パラメーター
-
(1/2)^2+cos^2A=1、解cosA=√3/...
-
積分区間に定義域外の値が含ま...
-
数III 微分の問題です
-
三角関数の問題
-
累乗 累乗根 同値性
-
2次方程式の「(x-3)^2=4」を解...
-
∫1/(x^2+x-1)dxの計算方法を教...
-
解の個数について
-
25%のパルス波のフーリエ級数展開
-
三角関数は典型値(1/2や√3/2な...
おすすめ情報