
1.すべての実数とすべての実数を1対1に対応させることができると仮定する
2.対角線論法により、対応表に存在しない実数が存在するから仮定は誤り
これだと実数同士間に全単射写像が存在しないことになって、実際には実数同士間に全単射写像が存在することと矛盾するから、この論理展開は間違ってますよね。とすると、
3.すべての自然数とすべての実数を1対1に対応させることができると仮定する
4.対角線論法により、対応表に存在しない実数が存在するから仮定は誤り
からも、「自然数と実数の間に全単射写像が存在しない」という結論を導くことはできないですよね。
質問は以上で以下は補足ですが、補足の内容に誤りがあればご指摘ください。
すべての自然数とすべての実数を1対1に対応させる方法
まず、すべての自然数と、異なる実数を無限に並べたもの、とを対応させるのだが、それは、異なる実数を無限に並べた「第一列」の「一番目」の実数を「1・1」とすると、
1→1・1
2→1・2
3→1・3
・
・
・
と表すことができる。これはいわゆる「すべての自然数とすべての実数を1対1に対応させたと仮定したもの」であり、対角線論法によってこの表には存在しない実数を作れることから、仮定は間違い=「実数は自然数より多い」という結論になるのが従来の話である。しかしこれは、自然数を対応させる対象を「第一列」に限定したことによる間違った結論だ。
対角線上の数字のずらし方は、すべて一つずらす1111…の他に、1211…,1234…,2624…と無限にあるので、一つの対角線から、「第一列」には存在しない実数を無限に生み出すことができる。対角線論法によって生み出された無限の実数を並べた「第二列」に自然数を対応させることができなければ先の結論は正しいことになるが、そんなことは全然なく、「第二列」の「一番目」の実数を「2・1」とすると、
1→1・1
2→2・1
3→1・2
4→2・2
5→1・3
6→2・3
・
・
・
のように、始めの、自然数と「第一列」の対応を解消した後、あらためて自然数を、「第一列」と「第二列」に、交互に対応させればいいだけの話なのだ。で、これは、「第一列」と「第二列」を合わせて「新たな第一列」にした(=始めの状態にリセットした)ということであり、この「新たな第一列=N1」の対角線から、対角線論法によって「新たな第二列=N2」が生まれるので、そしたらまたそれまでの対応を解消して
1→N1・1
2→N2・1
3→N1・2
4→N2・2
5→N1・3
6→N2・3
・
・
・
と、自然数を「新たな第一列」と「新たな第二列」に交互に対応させ、これを無限に繰り返せばいいのである。自然数を、「新たな第二列」の実数に、無限に対応させ続けることができるということは、すなわち両者の個数は同じということなのである。
「すべての自然数とすべての実数を1対1に対応させることができる」という仮定において対角線論法が言えることは、「実数の方が多い」ではなく、「実数は、対応表に、原理的に一部しか提出できない」であり、実数は一部しか出さないのになぜ自然数の方はすべて出さなければならないのか。
「全単射写像が存在する場合のみ両集合の大きさは等しい」という定義を無視して、もしも実数同士の場合に、
N2・1 1・1→1・1 N2・1
N2・2 2・1→2・1 N2・2
N2・3 1・2→1・2 N2・3
N2・4 2・2→2・2 N2・4
・
・
・
のように「両方に対応表に存在しない実数があるからそれぞれの個数は等しい」と言うなら、自然数と実数の場合も、
2 1→1・1 N2・1
4 3→2・1 N2・2
6 5→1・2 N2・3
8 7→2・2 N2・4
・
・
・
というように、偶数を対応表に提出しなければ「両方に対応表に存在しないものがあるからそれぞれの個数は等しい」と言えることになる。
A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
まあ 1,2 が間違っているのはあきらかだが, では「どこが間違っているのか」というのはこの質問文では指摘不能だ.
2 の「対角線論法」の適用がおかしい, というのは明白なのだが, 具体的にどのように適用しているのかまったく書かれていないのでそれ以上は書きようがないし, もっといえば「その他は正しい」という保証もない.
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 回答の意味について 3 2023/07/06 14:14
- 数学 実数同士の対応における対角線論法について 6 2023/07/08 17:01
- 数学 すべての自然数とすべての実数を1対1で対応させる(すべての実数を一列に並べる)方法について 3 2023/05/26 17:14
- 数学 ある方から頂いた回答について 1 2023/07/10 11:34
- 数学 回答の意味について 4 2023/07/11 11:19
- 数学 教科書が書き換わりますか? 2 2023/07/12 13:20
- 数学 質問文をよくお読みいただいた上での回答お待ちしています 9 2023/07/13 11:46
- 数学 すべての実数を整列させる方法を考えました。教科書が書き換わりますか? 53 2023/06/01 18:12
- 数学 質問の意味がわかる方だけに回答をお願いします。 1 2023/07/19 12:19
- 数学 質問文をよくお読みいただいた上での回答お待ちしていますパート2 3 2023/07/14 12:20
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
線形代数です
-
微分方程式の線形、非線形の証明
-
等しい写像のイメージ 等しい写...
-
円→楕円への写像
-
線形写像
-
基本的な事ですが…(単射、全射...
-
写像が既にあって、well-define...
-
「しゃぞーってなんスカ」って...
-
これめちゃあやしくないですか...
-
Domain of a Function
-
写像がwell-definedであること...
-
逆像と逆写像
-
何時間 何分 何秒を記号で表...
-
鋼材について
-
べき乗
-
皆さん定義を教えてください 「...
-
ニアリーイコールについて
-
近似曲線の数式を手計算で出し...
-
数学のハット、キャレットの意...
-
今、高校生です。 化学や物理、...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
LaTeX 写像式を描きたい
-
基本的な事ですが…(単射、全射...
-
射と写像の違い
-
写像であって関数でない例
-
同型であることの示し方を教え...
-
おすすめの幾何学の独習本
-
線形・非線形って何ですか?
-
積分は写像の一種と呼んでもいい?
-
写像の記号の、右下の小文字の...
-
「しゃぞーってなんスカ」って...
-
線形写像
-
円→楕円への写像
-
環上の加群
-
行列の階数
-
複素数の集合D={z: |z|≦2、π/6...
-
k代数、環準同型 画像の例3に関...
-
連続写像の単調増加についての...
-
かなり困っています。できれば...
-
写像の証明問題を教科書の定理...
-
集合A={1,2,3,4},B={5,6,7} (1)...
おすすめ情報