「みんな教えて! 選手権!!」開催のお知らせ

前回の質問↓
https://oshiete.goo.ne.jp/qa/13524752.html

1.すべての実数とすべての実数を1対1に対応させることができると仮定する


3.141592…→3.141592…
1.414213…→1.414213…
6.661922…→6.661922…
5.138924…→5.138924…
2.901877…→2.901877…
0.222555…→0.222555…




2.対角線論法により、対応表に存在しない実数、例えば0.222086…(この実数をどうやって作ったかわかる方だけ回答してください)が存在するから仮定は誤り

これだと実数同士間に全単射写像が存在しないことになって、実際には実数同士間に全単射写像が存在することと矛盾するから、この論理展開は間違ってますよね。とすると、

3.すべての自然数とすべての実数を1対1に対応させることができると仮定する
4.対角線論法により、対応表に存在しない実数が存在するから仮定は誤り

からも、「自然数と実数の間に全単射写像が存在しない」という結論を導くことはできないですよね。

に、「全ての実数 x を →x に対応させたのならば、0.222086… は 0.222086… に対応してるでしょ。」と回答された方がいらっしゃるのですが、それでいいなら「すべての実数をすべての自然数に1対1に対応させた」で済みますよね。

そもそも「すべての実数の集合」って存在するんですか。

「すべての実数の集合が存在しないことの証明」

1.すべての実数の集合が存在すると仮定する
2.その集合の元を並べると、対角線論法により、その集合に含まれない実数が現れるから仮定は誤り。

「0.222086… は 0.222086… に対応してる」つまり

0.222086…→        ←0.222086…
    3.141592…→3.141592…
    1.414213…→1.414213…
    6.661922…→6.661922…
    5.138924…→5.138924…
    2.901877…→2.901877…
    0.222555…→0.222555…
    ・
    ・
    ・

というように、対角線論法で作った実数同士を、0.222086…の次は7.355038…同士、次は…というように「対応させ続けられるから」「実数同士間には全単射写像が存在する」と言えるなら同様に

1→      ←0.222086…   ←7.355038…
2→3.141592…
3→1.414213…
4→6.661922…
5→5.138924…
6→2.901877…
7→0.222555…




というように、対角線論法で作った実数は、元の対応をずらして、自然数とも対応させ続けられるので、自然数と実数の間にも全単射写像が存在しますよね。その方は自然数と実数の対応の場合は「未対応の実数が残るから全単射にはならない」ともおっしゃってたのですが、「未対応の実数が残る」のは実数同士の対応でも同じですよね。

A 回答 (1件)

質問文に書かれていない 0.222086… の作り方が、


小数第 k 位が表の第 k 列の小数の小数第 k 位の数字とは異なる
だったとすれば、その作り方は 0.222086… が
表に載っている(自然数と同数)の(実数の部分集合)の中には無い
ことしか保証しない。
自然数と実数が一対一対応できない(実数のほうが多い)ことは
既に証明されているから、表には全ての実数は載っていない。
0.222086… は、表に載っていない実数のひとつと一致する
というだけの話。こんなものは対角線論法ではない。
    • good
    • 1
この回答へのお礼

Thank you

回答ありがとうございます。

お礼日時:2023/07/11 10:31

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!


おすすめ情報