前回の質問↓
https://oshiete.goo.ne.jp/qa/13524752.html
1.すべての実数とすべての実数を1対1に対応させることができると仮定する
例
3.141592…→3.141592…
1.414213…→1.414213…
6.661922…→6.661922…
5.138924…→5.138924…
2.901877…→2.901877…
0.222555…→0.222555…
・
・
・
2.対角線論法により、対応表に存在しない実数、例えば0.222086…(この実数をどうやって作ったかわかる方だけ回答してください)が存在するから仮定は誤り
これだと実数同士間に全単射写像が存在しないことになって、実際には実数同士間に全単射写像が存在することと矛盾するから、この論理展開は間違ってますよね。とすると、
3.すべての自然数とすべての実数を1対1に対応させることができると仮定する
4.対角線論法により、対応表に存在しない実数が存在するから仮定は誤り
からも、「自然数と実数の間に全単射写像が存在しない」という結論を導くことはできないですよね。
に、「全ての実数 x を →x に対応させたのならば、0.222086… は 0.222086… に対応してるでしょ。」と回答された方がいらっしゃるのですが、それでいいなら「すべての実数をすべての自然数に1対1に対応させた」で済みますよね。
そもそも「すべての実数の集合」って存在するんですか。
「すべての実数の集合が存在しないことの証明」
1.すべての実数の集合が存在すると仮定する
2.その集合の元を並べると、対角線論法により、その集合に含まれない実数が現れるから仮定は誤り。
「0.222086… は 0.222086… に対応してる」つまり
0.222086…→ ←0.222086…
3.141592…→3.141592…
1.414213…→1.414213…
6.661922…→6.661922…
5.138924…→5.138924…
2.901877…→2.901877…
0.222555…→0.222555…
・
・
・
というように、対角線論法で作った実数同士を、0.222086…の次は7.355038…同士、次は…というように「対応させ続けられるから」「実数同士間には全単射写像が存在する」と言えるなら同様に
1→ ←0.222086… ←7.355038…
2→3.141592…
3→1.414213…
4→6.661922…
5→5.138924…
6→2.901877…
7→0.222555…
・
・
・
というように、対角線論法で作った実数は、元の対応をずらして、自然数とも対応させ続けられるので、自然数と実数の間にも全単射写像が存在しますよね。その方は自然数と実数の対応の場合は「未対応の実数が残るから全単射にはならない」ともおっしゃってたのですが、「未対応の実数が残る」のは実数同士の対応でも同じですよね。
A 回答 (1件)
- 最新から表示
- 回答順に表示
No.1
- 回答日時:
質問文に書かれていない 0.222086… の作り方が、
小数第 k 位が表の第 k 列の小数の小数第 k 位の数字とは異なる
だったとすれば、その作り方は 0.222086… が
表に載っている(自然数と同数)の(実数の部分集合)の中には無い
ことしか保証しない。
自然数と実数が一対一対応できない(実数のほうが多い)ことは
既に証明されているから、表には全ての実数は載っていない。
0.222086… は、表に載っていない実数のひとつと一致する
というだけの話。こんなものは対角線論法ではない。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 実数同士の対応における対角線論法について 6 2023/07/08 17:01
- 数学 回答の意味について 4 2023/07/11 11:19
- 数学 実数同士の全単射写像について 2 2023/07/05 17:12
- 数学 回答の意味について 3 2023/07/06 14:14
- 数学 すべての自然数とすべての実数を1対1で対応させる(すべての実数を一列に並べる)方法について 3 2023/05/26 17:14
- 数学 教科書が書き換わりますか? 2 2023/07/12 13:20
- 数学 質問文をよくお読みいただいた上での回答お待ちしています 9 2023/07/13 11:46
- 数学 すべての実数を整列させる方法を考えました。教科書が書き換わりますか? 53 2023/06/01 18:12
- その他(教育・科学・学問) 関数、写像について 1 2022/04/10 23:45
- 数学 質問文をよくお読みいただいた上での回答お待ちしていますパート2 3 2023/07/14 12:20
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~12/6】 西暦2100年、小学生のなりたい職業ランキング
- ・ちょっと先の未来クイズ第5問
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報