
No.1ベストアンサー
- 回答日時:
∠FEG=90°
FB=FE=5-x とおく ................(1)
BG=EG=y とおく ................(2)
から
AF=x となり 三平方の定理から
5-x=√(x^2 +3^2)=√(x^2 +9)
(5-x)^2=x^2 +9
25-10x=9
10x=25-9=16
x=1.6 故に FB=5-x=5-1.6=3.4
次に
EからBCに降ろした垂線との交点をHとすれば (2)と三平方の定理から
y=√{5^2 +(y-3)^2}
y^2=25+y^2 -6y+9
6y=25+9=34
y=34/6 =BG
従って 三平方の定理より FGは求まるでしょう!
尚 BGが3cmよりも短い場合も(y-3)^2 が(3-y)^2 となるだけなので問題なしと判断しました。また
座標と法線から 及び ベクトルの内積の直交条件からもできるでしょうから挑戦しては!?
分かりやすく解説していただきありがとうございます!自力では解けず行き詰まってしまい、もやもやしていたので大変助かりました。また発展的な解き方のヒントもいただきありがとうございます。高校生で数学から逃げてしまった文系大人の学び直しなので時間がかかると思いますがチャレンジしてみます!
No.6
- 回答日時:
FGとBEとの交点をHとすると BEで分けられた面積の上下も合同なので
FGとBEは直交するので
BH=HE=(1/2)・√(3^2+5^2)=(1/2)・√34
よって 面積;△BFG=△FEG=3.4・y/2=FG・BH/2
3.4y=FG・(1/2)・√34
また 三平方の定理より
FG=√(3.4^2+y^2)
従って
FG^2=3.4^2+y^2=(y・2・3.4/√34)^2=(y・√34 /5)^2
3.4^2=(34/25 -1)y^2=9y^2/25
y^2=3.4^2・25/9
y=3.4・5/3=34・5/30=34/6
以下略
No.5
- 回答日時:
タレスの定理から
FGを直径とする円周上の点 E B の円だから
孤EFにおける円周角
∠EGF=FBE=Θ とおけば
cosΘ=AB/EB=5/√(3^2+5^2)=5/√34
sinΘ=AE/BE=3/√34
∠BFG=90-Θ から
FG=3.4/cos(90-Θ)=3.4/sinΘ=3.4/(3/√34)=17√34 /15
タレスの定理と三角関数の併用!
No.4
- 回答日時:
∠FEG=90°
FB=FE=5-x とおく
BG=EG=y とおく .
から
AF=x となり 三平方の定理から
5-x=√(x^2 +3^2)=√(x^2 +9)
(5-x)^2=x^2 +9
25-10x=9
10x=25-9=16
x=1.6 故に FB=5-x=5-1.6=3.4
( 台形の面積から!)
BG=y とおく
台形ABGE=(3+y)・5/2=7.5+2.5y ............(1)
△AFE=3・1.6/2=3・0.8=2.4 ............(2)
∴△FBG=△FEG=((1)-(2))/2=(7.5+2.5y-2.4)/2=(5.1+2.5y)/2
また =BF・BG/2=3.4y/2=1.7y
よって
1.7y=(5.1+2.5y)/2
3.4y=5.1+2.5y
5.1=3.4y-2.5y=0.9 y
y=5.1/0.9=51/9=17/3=34/6
No.3
- 回答日時:
高校生では 三角関数で
∠FEG=90°
FB=FE=5-x とおく ................(1)
BG=EG=y とおく ................(2)
から
AF=x となり 三平方の定理から
5-x=√(x^2 +3^2)=√(x^2 +9)
(5-x)^2=x^2 +9
25-10x=9
10x=25-9=16
x=1.6 故に FB=5-x=5-1.6=3.4
∠BFG=Θ とおくと
cosΘ=FB/FG=3.4/FG ∴FG=3.4/cosΘ
∠AFE=180-2・Θ から
cos(180-2・Θ)=AF/EF=1.6/3.4=16/34=8/17
cos(180-2・Θ)= - cos2Θ
倍角の公式より
= - (2cosΘ^2 -1)=1 -2cosΘ^2
∴8/17=1-2cosΘ^2
2cosΘ^2=1-8/17=(17-8)/17=9/17
cosΘ^2=9/34
cosΘ=3/√34 >0のため
FG=3.4/cosΘ=3.4/(3/√34)=34√(34)/30=17√(34) /15
三角関数が一番早い!
三角関数を使った解き方も教えていただきありがとうございます!
三角関数に関する知識を完全に忘れてしまっていたため、余弦定理、加法定理、2倍角の公式の復習と一緒に解き方を勉強させていただきました。
もし自力で三角関数で解こうとした場合に、
・∠BFGをθと置いてcosから最終的にFGを求めるという道筋が描けるか
・cos(180-2θ)を2パターンの式から表してcosθを求めていくという発想に辿り着けるか
がポイントになるのかなと思いました。
これから他の解法も勉強させていただきます!
No.2
- 回答日時:
別解
∠FEG=90°
FB=FE=5-x とおく ................(1)
BG=EG=y とおく ................(2)
から
AF=x となり 三平方の定理から
5-x=√(x^2 +3^2)=√(x^2 +9)
(5-x)^2=x^2 +9
25-10x=9
10x=25-9=16
x=1.6 故に FB=5-x=5-1.6=3.4
EFのF側の延長線とBCとの交点をHとすれば
△AEF ∽ △BFH から 比を使って
AF:BF=AE:BH=EF:FH
AF:BF=1.6:3.4=16:34
AE:BH=3:BHから BH=3・34/16=51/8
EF:FH=√(1.6^2 + 3^2 ):FH =BF:FH=3.4:FH
HE=3.4・(50/16)=340/32=170/16
従って △HGE の面積の2倍 は
GH・AB=HE・EG
(BH+BG)・5=(170/16)・BG
(BG+51/8)・5=10.625・BG
5・51/8=(10.625-5)BG=5.625・BG
BG=5・51/(8・5.625)=5・51/45=51/9=17/3=34/6
と同じ
以下省略!
こんなにたくさんの解き方があるんですね!
教えていただきありがとうございます!
FEの延長線で相似の三角形を作り、△HGEの面積を求める式からBGの長さを求めるというのは自分には全く浮かばないだろうという発想でした。
数学が得意な方の発想としては、この問題を見た時に「EFの延長線を引けば何か有効な情報が得られそうだ」という感覚からこのような方法を試してみるのでしょうか。
それともこの問題を見た時にBGをいかに求めるかが鍵になる、というところから逆算して△HGEを作るためにEFの延長線を引く、という発想になるのでしょうか。
いずれにしても独学では気付くことができない解法を教えていただき、とても勉強になっております。
どうもありがとうございます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- その他(形式科学) 再投稿 この問題がわかりません 1 2021/12/16 15:39
- 数学 数学が得意な方。 私は数学がとても苦手で、他の教科と比べ物にならないくらい点数が取れません。 また、 6 2021/10/26 18:09
- 数学 【高校物理】 Q.とある波動の問題で、sin5°, sin10°, ・・・, sin90°の値が載っ 2 2021/12/09 15:20
- 数学 三角比の不等式の問題です。 0°≦θ≦180°のとき、次の不等式を満たすθの値の範囲を求めよ。 解答 2 2021/11/24 00:31
- 中学校 中学生です。通知表で、評価の思考判断表現にc°が(国語・数学・社会・理科)つきました,,, その他の 2 2021/12/30 16:02
- 数学 現在中学生の者です。 僕は工学的なものに興味があり、高校は理系を選択したいと思っています。 ただ、僕 6 2021/11/25 22:20
- 子育て なぜ空が青いのか、などの小さい子の質問にどのように答えますか 10 2021/12/05 20:53
- 数学 数学の表記について教えてください。 y=1/2*5*(5-x) という式の答えが問題集の解答ではy= 1 2021/12/30 06:19
- その他(自然科学) AC100Vのコンセントに関して質問があります。 1 2021/11/27 05:48
- 地理学 AOA断面図(?)について。 1 2021/12/12 18:53
今、見られている記事はコレ!
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
-
なぜ批判コメントをするの?その心理と向き合い方をカウンセラーにきいた!
今や生活に必要不可欠となったインターネット。手軽に情報を得られるだけでなく、ネットを介したコミュニケーションも一般的となった。それと同時に顕在化しているのが、他者に対する辛らつな意見だ。ネットニュース...
-
大麻の使用罪がなかった理由や法改正での変更点、他国との違いを弁護士が解説
ドイツで2024年4月に大麻が合法化され、その2ヶ月後にサッカーEURO2024が行われた。その際、ドイツ警察は大会運営における治安維持の一つの方針として「アルコールを飲んでいるグループと、大麻を吸っているグループ...
-
ピンとくる人とこない人の違いは?直感を鍛える方法を心理コンサルタントに聞いた!
根拠はないがなんとなくそう感じる……。そんな「直感がした」という経験がある人は少なくないだろう。ただ直感は目には見えず、具体的な説明が難しいこともあるため、その正体は理解しにくい。「教えて!goo」にも「...
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
spi 非言語
-
順列、4桁の整数をつくる問題
-
SPI 非言語の問題です
-
互いに素と負の数
-
線形代数 行列の計算 12.2 d6
-
大学の線形代数についての質問...
-
数学:図形問題について 先日、...
-
図形問題、三平方の定理 添付画...
-
下の画像の問題を解説してくだ...
-
16進数を正負反転する方法
-
答えは3です 解説お願いします
-
AI(人工知能)が数学の問題を...
-
中学数学空間図形の問題です。 ...
-
高校1年生 数A 場合の数と確...
-
数学の問題です。 (3)④がわか...
-
図から円の直径が求められません。
-
数学の問題です。 (2)がわか...
-
因数分解を利用した式の値について
-
クレーンでのCFブレーキとな...
-
マンションのデータ流用
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報