A 回答 (3件)
- 最新から表示
- 回答順に表示
No.3
- 回答日時:
コーシー列の概略について
#2で
1/(2+a[n])<1/2
を使えば、帰納方から
|a[n+1]-a[n]|<(1/4)|a[n]-a[n-1]|<…<(1/4)ⁿ⁻¹|a₂-a₁|
次に、m≧n, k=1/4 として
|a[m]-a[n]|
≦|a[m]-a[m-1]|+|a[m-1]-a[m-2]|+…+|a[n+1]-a[n]|
<{k^(m-2)+k^(m-3)+…+kⁿ⁻¹}|a₂-a₁|
=kⁿ⁻¹{k^(m-n-1)+k^(m-n-2)+…+1}|a₂-a₁|
=kⁿ⁻¹[{1-k^(m-n)}/(1-k)] |a₂-a₁|
<[kⁿ⁻¹/(1-k)] |a₂-a₁| → 0 (m,n → ∞)
m,nの大小を入れ替えても同じ議論が成り立つ。したがって
∀ε>0, ∃N, m,n≧Nなら |a[m]-a[n]|<ε
が成り立つ。
つまり、a[n]はコーシー列となり、a[n]は収束する。
したがって、漸化式の極限を解けば、a[n+1],a[n]とも同じ、値
xに収束するから、極限値xは
x=1/(2+x)
を満たし、a[n]>0 だから、x≧0の方を選べばよい。
No.2
- 回答日時:
漸化式を使って、
|a_(n+2) - a_(n+1)| = | 1/(2 + a_(n+1)) - 1/(2 + a_n) |
= | { (2 + a_n) - (2 + a_(n+1)) } / { (2 + a_(n+1))(2 + a_n) } |
= |a_(n+1) - a_n| / |(2 + a_(n+1))(2 + a_n)|.
(2 + a_(n+1))(2 + a_n) ≧ 1 であることが言えれば、
|a_(n+2) - a_(n+1)| ≦ |a_(n+1) - a_n| になりますね。
再度漸化式を使って
(2 + a_(n+1))(2 + a_n) = (2 + 1/(2 + a_n))(2 + a_n)
= 2(2 + a_n) + 1.
漸化式から帰納法で a_n > 0 が言えるので、
(2 + a_(n+1))(2 + a_n) = 2(2 + a_n) + 1 > 5 > 0 です。
オシマイ。
でも、いずれにせよ lim[n→∞] a_n の値は求めないといけないので、
No.1 のように、先に値から求めてしまうほうが楽かなあ...
No.1
- 回答日時:
もっと簡単な方法があります。
まず、帰納法から a[n]>0は自明。すると
1/(2+a[n])<1/2・・・・・①
x=1/(2+x)・・・・②
とおく(数列が収束すると仮定したときの値)。
この値は x=-1±√2 だが、x>0をとり
x=-1+√2
とする。
次式を計算すると
|a[n+1]-x|=|1/(2+a[n])-1/(2+x)|・・・・②から
=|x-a[n]|/{(2+a[n])(2+x)}
≦(1/4)|a[n]-x|・・・①から(a[n]=xの場合も含め)
すると、帰納的に
|a[n+1]-x|≦(1/4)ⁿ|a₁-x|=(1/4)ⁿ|a-x| → 0
したがって、a[n] → x
なお、コーシー列を示すのはバナッハの不動点定理の方法が
使えると思う。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- C言語・C++・C# C言語初心者 構造体 課題について 2 2023/03/10 19:48
- Excel(エクセル) Excel 判別して色変え 2 2021/12/02 18:38
- 会計ソフト・業務用ソフト エクセルについて教えてください。 1 2021/12/03 10:08
- Visual Basic(VBA) 【関数orVBA】カーソルのある行を黄色にし、A列の値を別シートに表示できますか? 4 2021/12/28 00:03
- 数学 次の問題について解答あるいはその方針を教えてほしいです。 a_n+1=1/(2+a_n) a_1=a 1 2022/11/03 21:36
- 数学 次の問題について解答あるいはその方針を教えてほしいです。 a_(n+1)=1/(2+a_n) a_1 2 2022/11/03 21:51
- その他(データベース) Access Nz関数の合計値の小数点桁数について 1 2021/12/14 14:51
- 数学 解析学 質問です。 lim a_n=α(n→∞)のとき有界な数列{b_n}について lim (a_n 2 2022/11/25 07:47
- 数学 解析学の問題です。 s>1とする。 S_n=Σ[k=1,2^n-1]1/k^s で定められる数列{S 2 2022/12/16 05:08
- 薬学 薬学部学生です。物理化学の問題でわからない問題があったので解説できる方お願いします。 一次反応に従っ 1 2021/11/17 15:17
このQ&Aを見た人はこんなQ&Aも見ています
-
それもChatGPT!?と驚いた使用方法を教えてください
仕事やプライベートでも利用が浸透してきたChatGPTですが、こんなときに使うの!!?とびっくりしたり、これは画期的な有効活用だ!とうなった事例があれば教えてください!
-
あなたにとってのゴールデンタイムはいつですか?
一週間の中でもっともテンションが上がる「ゴールデンタイム」はいつですか? その逆で、一週間でもっとも落ち込むタイミングでも構いません。 よかったら教えて下さい!
-
遅刻の「言い訳」選手権
よく遅刻してしまうんです…… 「電車が遅延してしまい遅れました」 「歯医者さんが長引いて、、、」 「病院が混んでいて」 などなどみなさんがこれまで使ってきた遅刻の言い訳がたくさんあるのではないでしょうか?
-
ちょっと先の未来クイズ第5問
日本漢字能力検定協会が主催し、12月12日に発表される、2024年の「今年の漢字」に選ばれる漢字一文字は何でしょう?
-
とっておきの「まかない飯」を教えて下さい!
飲食店で働く方だけが食べられる、とっておきの「まかない飯」。 働いてらっしゃる方がSNSなどにアップしているのを見ると、表のメニューには出てこない秘密感もあって、「食べたい!!」と毎回思ってしまいます。
-
a1=1 , an+1 = √1+an (n=1 ,2,3・・)に対して
数学
-
大学数学 解析 上極限について
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~12/2】 国民的アニメ『サザエさん』が打ち切りになった理由を教えてください
- ・ちょっと先の未来クイズ第5問
- ・【お題】ヒーローの謝罪会見
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
【遊びのピタゴラスイッチはな...
-
直角三角形じゃないのに三平方...
-
ほうべき(方巾)の定理について
-
複素関数と実関数のテーラー展...
-
畳み込み積分の応用問題につい...
-
modを使用した平方根の求め方
-
合同式と倍数
-
ピタゴラス数について。
-
大学の記述入試で外積は使えま...
-
lim[x→+∞](x^n/e^x)=0 の証明
-
∠A=90°,AB=4,AC=3の直角三角...
-
等号・不等号に関する定理の名...
-
オイラーの多面体定理の拡張
-
△ABCの∠Aの2等分線と辺BCとの交...
-
11の22乗を13で割った余り...
-
至上最難問の数学がとけた
-
4色定理と5人の王子様の解に...
-
AとBはn次正方行列とする。 積A...
-
十分性の確認について
-
二つの円での平行の証明
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
lim[x→+∞](x^n/e^x)=0 の証明
-
大学の記述入試で外積は使えま...
-
至上最難問の数学がとけた
-
ほうべき(方巾)の定理について
-
【遊びのピタゴラスイッチはな...
-
直角三角形じゃないのに三平方...
-
至急です! 数学で証明について...
-
相似比の答え方・・・
-
【線形代数】基底、dimVの求め方
-
パップスギュルダンの定理について
-
定理と法則の違い
-
二次合同式の解き方
-
ファルコンの定理は解かれまし...
-
△ABCの∠Aの2等分線と辺BCとの交...
-
「有限個の素イデアルしか持た...
-
実数の整列化について
-
高校の数学です。
-
オイラーの多面体定理の拡張
-
留数定理とコーシーの積分公式...
-
中学2年図形の証明についての質...
おすすめ情報