z=(1-cos(t))-isin(t)
=2sin(t/2){cos(w)+isin(w)}
2sin(t/2)cos(w)=(1-cos(t))=2(sin(t/2))^2
2sin(t/2)sin(w)=-sin(t)=-2sin(t/2)cos(t/2)
cos(w)=sin(t/2)=cos(t/2-π/2)
sin(w)=-cos(t/2)=sin(t/2-π/2)
以下、私の答案と問題です
https://imgur.com/a/tBsyupO
よろしくお願いします
No.9
- 回答日時:
#4です。
修正された図はかなり良くなっています。
まだ問題はある。二つほど指摘しておきます。
1.O'からOP'におろした垂線の足をMとしていますが、MはOPの中点としてすでに使われている文字です。同じ文字を別の点に用いてはいけません。
別の文字にすれば問題ありません。
2.OP'とO'Mが平行であることが示されていない。
見た目でわかると思うかもしれないが、この二つの線が平行であることを示していない。
見た目でわかる、などということは数学では通用しない。ちゃんと証明しないといけない。
一目でわかるほど簡単ではあるが、根拠を示しておかないといけない。
例えばOP→・OP'→=0を示し∠POP'=π/2であるとかとか、PP'が直径であることから直径に対する円周角=π/2であるなどを用いればよい。中点連結定理でもOK。
No.7
- 回答日時:
つぎにー2π<θ<0の場合としてNo.5の図の
ベクトルO'P''の実軸の正の向きとなす角をθとすると
直線O'P''と円のもう一つの交点(P''と反対側の交点)をQ
としたとき、ベクトルOQがzになります。
実軸正の向きとベクトルO'Qのなす角がπ-|θ|=π+θだから
Oのところの白抜きの角はπ/2+θ/2になり
|z|=OQ=2cos(θ/2+π/2)=-2sinθ/2、
偏角はベクトルOQが実軸の正の向きに対して上向きだから
白抜きの角そのままargz=θ/2+π/2 となります。
No.6
- 回答日時:
正直言って、θ>0の場合にあなたの図でθをそのように取る
意味がわかりません。
皆さん回答しているように
θはベクトルO'P'が実軸の正の向きに対して取る角とすべきなのです。
すると、ベクトルO'P'=cosθ+isinθでー(cosθ+isinθ)=O'Pベクトル
1-(cosθ+isinθ)=OO'ベクトル+O'Pベクトル=OPベクトル
つまりz=OPベクトルとなるわけです。
No.5さんのあげているあなたの修正図が
2π>θ>0の例になっているので
これを使って説明すると図でベクトルO'Pが実軸となす角の絶対値
π-θなので円周角と中心角の関係から図の黒塗りの角度は
π/2-θ/2、したがって|z|=OP=2OM=2・1cos(π/2-θ/2)=2sinθ、
偏角はベクトルOPがじつじくの正の向きに対して下向きなので
argz=-(π/2-θ/2)=θ/2-π/2と解釈します。
0>θ>-2πの時の説明はまたあとで、
No.4
- 回答日時:
#2です。
>勘違いされていませんか?
勘違いしているのはあなたです。
あなたの書いてある図にある△OO'Pをよく見てみましょう。
∠O'OPの大きさがθ/2ならOM=cos(θ/2)になります。sin(θ/2)にはなりません。
あなたがθ/2としているところの角の大きさはπ/2-θ/2なのです。
正しくは∠OO'P=θであり、角の大きさの根本のところが間違っているのです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 級数の係数を求める 3 2024/05/22 07:06
- 数学 高校生です。 この問題が解説がないため合ってるか分かりません。 この回答であってますか? 回答 g( 3 2023/01/24 14:05
- 数学 ∮{cos(x/2)+sin(x/2)}dx =2sin(x/2)-2cos(x/2)+C =2√2 3 2023/10/05 01:49
- 数学 回答者どもがなかなか答えられないようなので、考えてみました。 ∫[0,π/2]log(sinx)/( 4 2022/08/31 16:30
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開は f(θ) =sin(θ)/c 5 2022/10/29 21:02
- 数学 高校生です。 この問題の解説がなくてこの解き方で合っているでしょうか? g(x,y)=0のとき x^ 2 2023/01/25 17:28
- 数学 数学II この問題の②について cos(θ+5π/3)=sin{(θ+5π/3)+π/2}となってい 6 2024/05/21 19:48
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開に関して 以外の「」の解答を頂き 13 2022/11/11 09:45
- 数学 1/sin^2xと1/tan^2xの微分の答えが同じになってしまう件について 2 2023/12/09 17:42
- 物理学 物理の問題です。 1 2022/12/20 23:04
このQ&Aを見た人はこんなQ&Aも見ています
-
カンパ〜イ!←最初の1杯目、なに頼む?
飲み会で最初に頼む1杯、自由に頼むとしたら何を頼みますか? 最初はビールという縛りは無しにして、好きなものを飲むとしたら何を飲みたいですか。
-
あなたにとってのゴールデンタイムはいつですか?
一週間の中でもっともテンションが上がる「ゴールデンタイム」はいつですか? その逆で、一週間でもっとも落ち込むタイミングでも構いません。 よかったら教えて下さい!
-
初めて自分の家と他人の家が違う、と意識した時
子供の頃、友達の家に行くと「なんか自分の家と匂いが違うな?」って思いませんでしたか?
-
2024年のうちにやっておきたいこと、ここで宣言しませんか?
2024年も残すところ50日を切りましたね。 ことしはどんな1年でしたか? 2024年のうちにやっておきたいこと、 よかったらここで宣言していってください!
-
ギリギリ行けるお一人様のライン
おひとり様需要が増えているというニュースも耳にしますが、 あなたが「ギリギリ一人でも行ける!」という場所や行為を教えてください
-
(^^)熊本大学素数平面
数学
-
方程式 九州大学過去問
数学
-
添付している画像の積分が解けません
数学
-
-
4
法政大学過去問 複素数平面
数学
-
5
複素数平面
数学
-
6
複素数平面
数学
-
7
|x+2|>0 計算方法
数学
-
8
複素数平面 三重大学過去問
数学
-
9
早稲田大学過去問 複素数平面
数学
-
10
行列式を帰納てきに求めるにあたって、 このBの行列って小さいnでどうなりますか? 例えば 一次の時a
数学
-
11
こちらの2024/08/20 18:17にされた質問と解答を基に質問があります。 https://o
数学
-
12
2024.8.20 18:17にした質問の、 2024.8.28 15:15の解答の 「g(z)=t
数学
-
13
高校数学です。 無限級数で、無限級数が収束するとき第n項は0に収束しますがこの逆は言えませんよね。
数学
-
14
奈良教育大学過去問複素数平面
数学
-
15
ノンアルコール飲料
数学
-
16
簡単なはずですが教えてください。
数学
-
17
高校数学です。 極限のこの画像の解き方って間違ってますか?
数学
-
18
こちらの2024.08.20 18:17と2024.08.31 00:04の2つのf(z)=tan(
数学
-
19
一橋大学過去問 複素数平面
数学
-
20
数学を勉強すると論理的思考力が向上するという疑わしい主張が横行しているのはなぜですか?
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
中高で数学をやる意義は? と聞...
-
答えは分かるのですが解き方が...
-
f(x)=sin3x (0,π/6]のフーリエ...
-
数学検定準一級を取得している...
-
以下の原稿(プレプリント)の...
-
矛盾法
-
高校の微分の問題で、g(x)=x^3-...
-
中1数学の問題が分かりません
-
ここでいうスカラーとはなにを...
-
a,bは0でない整数。a²/b³➡a/bを...
-
サイコロの確率の問題です! サ...
-
f(x)=f(x²)はどんなグラフにな...
-
平均すると何季に1度でしょうか。
-
1²+1²=は何ですか?
-
lim(x→0)sin2x/x=2でいいですよ...
-
√1って|1|もしくは±1ですよね?
-
2+3×5=はどうやってときますか...
-
数学多項式 セソサの解説してく...
-
大学数学の問題です |r=(x,y,z)...
-
数学の積分の長さについての質...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
2024.8.20 18:17にした質問の、...
-
こちらの2024.08.20 18:17と202...
-
2024.10.13 05:04にした質問の2...
-
2024.5.8 08:24の質問の 2024.5...
-
こちらの2024.08.20 18:17と202...
-
積分について
-
2024.10.8 12:12に質問した 202...
-
2024.5.8 08:24にした質問の 20...
-
この問題のときかたをおしえて...
-
2+A=10 3+B=12 A+B=19 これで正...
-
109x-29y=1 の整数解の見つけ方...
-
時計の長針と短針が重なる回数...
-
x>0,y>0→x^x+y^y≧x^y+y^x?
-
2024.8.20 18:17にした質問の20...
-
10のn乗-1でn=1から15,はなぜ17...
-
ミラーか線か
-
複素数平面
-
共テ模試で「切片」と書かれて...
-
数Ⅲの問題が分かりません
-
方程式 九州大学過去問
おすすめ情報
座標設定はO’ で始めていますが
極形式はOから考えているわけです
お分かりになったでしょうか?
絶対値を知りたいのですよね
以下、補足
画像拡大リンク先
https://imgur.com/a/G9t44Ay
返信お待ちしております
問題の絶対値が問題になっているんですよね。
以下、補足
画像拡大リンク先
https://imgur.com/a/G9t44Ay
何卒よろしくお願いいたします
問題の絶対値が知りたいのですよね
以下、補足
画像拡大リンク先
https://imgur.com/a/G9t44Ay
ご指摘のおかげです。
今この問題の最終答案を作っております
またご指摘等ありましたらよろしくお願いいたします
あなた様のご指摘のおかげです。
今この問題の最終答案を作っております
また何卒よろしくお願いいたします
先生、おはようございます。
最終答案ができましたので
ご指摘 アドバイス ご指導いただけると幸いです
以下、画像拡大リンク先
https://imgur.com/a/ibAyeZP
なにとぞよろしくお願いいたします
先生、おはようございます。
最終答案が出来上がりましたので
ご指導 ご指摘 アドバイスいただけると幸いです
以下、画像拡大リンク先
https://imgur.com/a/ibAyeZP
なにとぞよろしくお願いします