
z=(1-cos(t))-isin(t)
=2sin(t/2){cos(w)+isin(w)}
2sin(t/2)cos(w)=(1-cos(t))=2(sin(t/2))^2
2sin(t/2)sin(w)=-sin(t)=-2sin(t/2)cos(t/2)
cos(w)=sin(t/2)=cos(t/2-π/2)
sin(w)=-cos(t/2)=sin(t/2-π/2)
以下、私の答案と問題です
https://imgur.com/a/tBsyupO
よろしくお願いします
No.9
- 回答日時:
#4です。
修正された図はかなり良くなっています。
まだ問題はある。二つほど指摘しておきます。
1.O'からOP'におろした垂線の足をMとしていますが、MはOPの中点としてすでに使われている文字です。同じ文字を別の点に用いてはいけません。
別の文字にすれば問題ありません。
2.OP'とO'Mが平行であることが示されていない。
見た目でわかると思うかもしれないが、この二つの線が平行であることを示していない。
見た目でわかる、などということは数学では通用しない。ちゃんと証明しないといけない。
一目でわかるほど簡単ではあるが、根拠を示しておかないといけない。
例えばOP→・OP'→=0を示し∠POP'=π/2であるとかとか、PP'が直径であることから直径に対する円周角=π/2であるなどを用いればよい。中点連結定理でもOK。
No.7
- 回答日時:
つぎにー2π<θ<0の場合としてNo.5の図の
ベクトルO'P''の実軸の正の向きとなす角をθとすると
直線O'P''と円のもう一つの交点(P''と反対側の交点)をQ
としたとき、ベクトルOQがzになります。
実軸正の向きとベクトルO'Qのなす角がπ-|θ|=π+θだから
Oのところの白抜きの角はπ/2+θ/2になり
|z|=OQ=2cos(θ/2+π/2)=-2sinθ/2、
偏角はベクトルOQが実軸の正の向きに対して上向きだから
白抜きの角そのままargz=θ/2+π/2 となります。
No.6
- 回答日時:
正直言って、θ>0の場合にあなたの図でθをそのように取る
意味がわかりません。
皆さん回答しているように
θはベクトルO'P'が実軸の正の向きに対して取る角とすべきなのです。
すると、ベクトルO'P'=cosθ+isinθでー(cosθ+isinθ)=O'Pベクトル
1-(cosθ+isinθ)=OO'ベクトル+O'Pベクトル=OPベクトル
つまりz=OPベクトルとなるわけです。
No.5さんのあげているあなたの修正図が
2π>θ>0の例になっているので
これを使って説明すると図でベクトルO'Pが実軸となす角の絶対値
π-θなので円周角と中心角の関係から図の黒塗りの角度は
π/2-θ/2、したがって|z|=OP=2OM=2・1cos(π/2-θ/2)=2sinθ、
偏角はベクトルOPがじつじくの正の向きに対して下向きなので
argz=-(π/2-θ/2)=θ/2-π/2と解釈します。
0>θ>-2πの時の説明はまたあとで、
No.4
- 回答日時:
#2です。
>勘違いされていませんか?
勘違いしているのはあなたです。
あなたの書いてある図にある△OO'Pをよく見てみましょう。
∠O'OPの大きさがθ/2ならOM=cos(θ/2)になります。sin(θ/2)にはなりません。
あなたがθ/2としているところの角の大きさはπ/2-θ/2なのです。
正しくは∠OO'P=θであり、角の大きさの根本のところが間違っているのです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 級数の係数を求める 3 2024/05/22 07:06
- 数学 高校生です。 この問題が解説がないため合ってるか分かりません。 この回答であってますか? 回答 g( 3 2023/01/24 14:05
- 数学 ∮{cos(x/2)+sin(x/2)}dx =2sin(x/2)-2cos(x/2)+C =2√2 3 2023/10/05 01:49
- 数学 回答者どもがなかなか答えられないようなので、考えてみました。 ∫[0,π/2]log(sinx)/( 4 2022/08/31 16:30
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開は f(θ) =sin(θ)/c 5 2022/10/29 21:02
- 数学 高校生です。 この問題の解説がなくてこの解き方で合っているでしょうか? g(x,y)=0のとき x^ 2 2023/01/25 17:28
- 数学 数学II この問題の②について cos(θ+5π/3)=sin{(θ+5π/3)+π/2}となってい 6 2024/05/21 19:48
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開に関して 以外の「」の解答を頂き 13 2022/11/11 09:45
- 数学 1/sin^2xと1/tan^2xの微分の答えが同じになってしまう件について 2 2023/12/09 17:42
- 物理学 物理の問題です。 1 2022/12/20 23:04
このQ&Aを見た人はこんなQ&Aも見ています
-
複素数平面
数学
-
法政大学過去問 複素数平面
数学
-
複素数平面
数学
-
-
4
(^^)熊本大学素数平面
数学
-
5
方程式 九州大学過去問
数学
-
6
早稲田大学過去問 複素数平面
数学
-
7
|x+2|>0 計算方法
数学
-
8
複素数平面 三重大学過去問
数学
-
9
ノンアルコール飲料
数学
-
10
簡単なはずですが教えてください。
数学
-
11
奈良教育大学過去問複素数平面
数学
-
12
高校数学です。 極限のこの画像の解き方って間違ってますか?
数学
-
13
こちらの2024.08.20 18:17と2024.08.31 00:04の2つのf(z)=tan(
数学
-
14
こちらの2024/08/20 18:17にされた質問と解答を基に質問があります。 https://o
数学
-
15
一橋大学過去問 複素数平面
数学
-
16
高校数学です。 無限級数で、無限級数が収束するとき第n項は0に収束しますがこの逆は言えませんよね。
数学
-
17
2024.8.20 18:17にした質問の、 2024.8.28 15:15の解答の 「g(z)=t
数学
-
18
cotz =cosz/sinz =i・(e^iz+e^(-iz)/(e^iz-e^(-iz) =i・
数学
-
19
曖昧な質問で申し訳ないです。たとえば√aとbの大小を比べるためにb*2-(√a)*2が0とどういう関
数学
-
20
これなぜ収束を前提とするのでしょうか。収束しないときにシグマを分けるのはだめな理由はなんでしょうか
数学
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
コピーしたい本のページ数
-
ルービックキューブと群論
-
【問題】 f(x) = x^2 - 4a x + ...
-
https://youtube.com/shorts/Kw...
-
3つの無理数a,b,cでf(x)=x^3+ax...
-
1/(s(s^2+2s+5))を部分分数分解...
-
limn→∞、10∧n=0?
-
上が✖で下が〇になる理由が、何...
-
三角形の面積は、底辺✕高さ÷2 ...
-
数学の問題点を尋ねることがで...
-
至急 a²b+a-b-1 の因数分解...
-
数ⅱ等式の証明について。 条件...
-
文字置き 必要条件・十分条件に...
-
xy平面上の点P(x,y)に対し,点Q(...
-
青の吹き出しの何をどう考えれ...
-
高校数学について
-
この180➗204の計算の仕方教えて...
-
写真は多変数関数についての「...
-
ランダウの記号のとある演算
-
数学I Aの問題
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
厄介そうな定積分
-
二重和
-
確率の質問です
-
モンティホール問題について 問...
-
【 畳み込み積分 のτ 意味がよ...
-
数学が得意な人の考え方を知り...
-
この算数問題、何がおかしい? ...
-
サイコロを100回投げて、奇数、...
-
SPI 食塩水の等量交換 完全文系...
-
割り算の不思議
-
足し算のざっくり計算が苦手で...
-
問題 √2が無理数であることを入...
-
なぜ、Δtがdtではなくdτになる...
-
全体100人のうちリンゴ派90人み...
-
新幹線が最高速度に到達するま...
-
これって①番の公式を使うのでし...
-
2.2%は分数で表すと22/1000、約...
-
数学の問題です。110で最小値を...
-
積分について
-
三角関数ですこれはなぜx=0と...
おすすめ情報
座標設定はO’ で始めていますが
極形式はOから考えているわけです
お分かりになったでしょうか?
絶対値を知りたいのですよね
以下、補足
画像拡大リンク先
https://imgur.com/a/G9t44Ay
返信お待ちしております
問題の絶対値が問題になっているんですよね。
以下、補足
画像拡大リンク先
https://imgur.com/a/G9t44Ay
何卒よろしくお願いいたします
問題の絶対値が知りたいのですよね
以下、補足
画像拡大リンク先
https://imgur.com/a/G9t44Ay
ご指摘のおかげです。
今この問題の最終答案を作っております
またご指摘等ありましたらよろしくお願いいたします
あなた様のご指摘のおかげです。
今この問題の最終答案を作っております
また何卒よろしくお願いいたします
先生、おはようございます。
最終答案ができましたので
ご指摘 アドバイス ご指導いただけると幸いです
以下、画像拡大リンク先
https://imgur.com/a/ibAyeZP
なにとぞよろしくお願いいたします
先生、おはようございます。
最終答案が出来上がりましたので
ご指導 ご指摘 アドバイスいただけると幸いです
以下、画像拡大リンク先
https://imgur.com/a/ibAyeZP
なにとぞよろしくお願いします