
z=(1-cos(t))-isin(t)
=2sin(t/2){cos(w)+isin(w)}
2sin(t/2)cos(w)=(1-cos(t))=2(sin(t/2))^2
2sin(t/2)sin(w)=-sin(t)=-2sin(t/2)cos(t/2)
cos(w)=sin(t/2)=cos(t/2-π/2)
sin(w)=-cos(t/2)=sin(t/2-π/2)
以下、私の答案と問題です
https://imgur.com/a/tBsyupO
よろしくお願いします
No.9
- 回答日時:
#4です。
修正された図はかなり良くなっています。
まだ問題はある。二つほど指摘しておきます。
1.O'からOP'におろした垂線の足をMとしていますが、MはOPの中点としてすでに使われている文字です。同じ文字を別の点に用いてはいけません。
別の文字にすれば問題ありません。
2.OP'とO'Mが平行であることが示されていない。
見た目でわかると思うかもしれないが、この二つの線が平行であることを示していない。
見た目でわかる、などということは数学では通用しない。ちゃんと証明しないといけない。
一目でわかるほど簡単ではあるが、根拠を示しておかないといけない。
例えばOP→・OP'→=0を示し∠POP'=π/2であるとかとか、PP'が直径であることから直径に対する円周角=π/2であるなどを用いればよい。中点連結定理でもOK。
No.7
- 回答日時:
つぎにー2π<θ<0の場合としてNo.5の図の
ベクトルO'P''の実軸の正の向きとなす角をθとすると
直線O'P''と円のもう一つの交点(P''と反対側の交点)をQ
としたとき、ベクトルOQがzになります。
実軸正の向きとベクトルO'Qのなす角がπ-|θ|=π+θだから
Oのところの白抜きの角はπ/2+θ/2になり
|z|=OQ=2cos(θ/2+π/2)=-2sinθ/2、
偏角はベクトルOQが実軸の正の向きに対して上向きだから
白抜きの角そのままargz=θ/2+π/2 となります。
No.6
- 回答日時:
正直言って、θ>0の場合にあなたの図でθをそのように取る
意味がわかりません。
皆さん回答しているように
θはベクトルO'P'が実軸の正の向きに対して取る角とすべきなのです。
すると、ベクトルO'P'=cosθ+isinθでー(cosθ+isinθ)=O'Pベクトル
1-(cosθ+isinθ)=OO'ベクトル+O'Pベクトル=OPベクトル
つまりz=OPベクトルとなるわけです。
No.5さんのあげているあなたの修正図が
2π>θ>0の例になっているので
これを使って説明すると図でベクトルO'Pが実軸となす角の絶対値
π-θなので円周角と中心角の関係から図の黒塗りの角度は
π/2-θ/2、したがって|z|=OP=2OM=2・1cos(π/2-θ/2)=2sinθ、
偏角はベクトルOPがじつじくの正の向きに対して下向きなので
argz=-(π/2-θ/2)=θ/2-π/2と解釈します。
0>θ>-2πの時の説明はまたあとで、
No.4
- 回答日時:
#2です。
>勘違いされていませんか?
勘違いしているのはあなたです。
あなたの書いてある図にある△OO'Pをよく見てみましょう。
∠O'OPの大きさがθ/2ならOM=cos(θ/2)になります。sin(θ/2)にはなりません。
あなたがθ/2としているところの角の大きさはπ/2-θ/2なのです。
正しくは∠OO'P=θであり、角の大きさの根本のところが間違っているのです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 級数の係数を求める 3 2024/05/22 07:06
- 数学 高校生です。 この問題が解説がないため合ってるか分かりません。 この回答であってますか? 回答 g( 3 2023/01/24 14:05
- 数学 ∮{cos(x/2)+sin(x/2)}dx =2sin(x/2)-2cos(x/2)+C =2√2 3 2023/10/05 01:49
- 数学 回答者どもがなかなか答えられないようなので、考えてみました。 ∫[0,π/2]log(sinx)/( 4 2022/08/31 16:30
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開は f(θ) =sin(θ)/c 5 2022/10/29 21:02
- 数学 高校生です。 この問題の解説がなくてこの解き方で合っているでしょうか? g(x,y)=0のとき x^ 2 2023/01/25 17:28
- 数学 数学II この問題の②について cos(θ+5π/3)=sin{(θ+5π/3)+π/2}となってい 6 2024/05/21 19:48
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開に関して 以外の「」の解答を頂き 13 2022/11/11 09:45
- 数学 1/sin^2xと1/tan^2xの微分の答えが同じになってしまう件について 2 2023/12/09 17:42
- 物理学 物理の問題です。 1 2022/12/20 23:04
このQ&Aを見た人はこんなQ&Aも見ています
-
(^^)熊本大学素数平面
数学
-
方程式 九州大学過去問
数学
-
添付している画像の積分が解けません
数学
-
-
4
複素数平面
数学
-
5
法政大学過去問 複素数平面
数学
-
6
複素数平面
数学
-
7
|x+2|>0 計算方法
数学
-
8
複素数平面 三重大学過去問
数学
-
9
早稲田大学過去問 複素数平面
数学
-
10
こちらの2024/08/20 18:17にされた質問と解答を基に質問があります。 https://o
数学
-
11
2024.8.20 18:17にした質問の、 2024.8.28 15:15の解答の 「g(z)=t
数学
-
12
高校数学です。 無限級数で、無限級数が収束するとき第n項は0に収束しますがこの逆は言えませんよね。
数学
-
13
簡単なはずですが教えてください。
数学
-
14
ノンアルコール飲料
数学
-
15
奈良教育大学過去問複素数平面
数学
-
16
こちらの2024.08.20 18:17と2024.08.31 00:04の2つのf(z)=tan(
数学
-
17
高校数学です。 極限のこの画像の解き方って間違ってますか?
数学
-
18
一橋大学過去問 複素数平面
数学
-
19
cotz =cosz/sinz =i・(e^iz+e^(-iz)/(e^iz-e^(-iz) =i・
数学
-
20
これなぜ最後の不定形が0に収束するとわかるのでしょうか。a,b分かってそれを代入しても不定形になるだ
数学
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
二重和
-
これって①番の公式を使うのでし...
-
全体100人のうちリンゴ派90人み...
-
確率の質問です
-
グラフの作成に便利な、
-
モンティホール問題について 問...
-
複素数に拡張したタンジェント...
-
純実(purely real)とはどんな状...
-
フラッシュ暗算ってそろばん経...
-
媒介変数 x = t + 1/t-1 , y = ...
-
mx-y-m-1=0,x+my-2m-3=0の交点P...
-
画像の問題の(2)で質問です。 ①...
-
ヒット&ブローゲーム(数あて...
-
f(z)=(z^2-1)のテイラー展開と...
-
九星気学では、人の生まれた年...
-
高1数学二次関数の問題です!
-
8進数の重みについて 1→8→64は...
-
4500と3000を1:9と3:7とか比...
-
この増減表を求める問題で微分...
-
独立かどうかの判断のしかた
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(z)=(z^2-1)のテイラー展開と...
-
中高で数学をやる意義は? と聞...
-
二重和
-
誤差の大きさ
-
確率の質問です
-
123を使って出来る最大の数は?
-
【数学の問題】男女4vs4の合コ...
-
媒介変数 x = t + 1/t-1 , y = ...
-
2025.2.17 02:11にした質問の延...
-
演算子法についての式変形について
-
三つの複素数の位置関係
-
クレメールの公式について教え...
-
2.2%は分数で表すと22/1000、約...
-
皆既日食について
-
高1数学二次関数の問題です!
-
一番なんですけど、 等比数列だ...
-
数学と言うか数字の面白さ
-
絶対値の中が0以上ならそのまま...
-
これなに
-
数学
おすすめ情報
座標設定はO’ で始めていますが
極形式はOから考えているわけです
お分かりになったでしょうか?
絶対値を知りたいのですよね
以下、補足
画像拡大リンク先
https://imgur.com/a/G9t44Ay
返信お待ちしております
問題の絶対値が問題になっているんですよね。
以下、補足
画像拡大リンク先
https://imgur.com/a/G9t44Ay
何卒よろしくお願いいたします
問題の絶対値が知りたいのですよね
以下、補足
画像拡大リンク先
https://imgur.com/a/G9t44Ay
ご指摘のおかげです。
今この問題の最終答案を作っております
またご指摘等ありましたらよろしくお願いいたします
あなた様のご指摘のおかげです。
今この問題の最終答案を作っております
また何卒よろしくお願いいたします
先生、おはようございます。
最終答案ができましたので
ご指摘 アドバイス ご指導いただけると幸いです
以下、画像拡大リンク先
https://imgur.com/a/ibAyeZP
なにとぞよろしくお願いいたします
先生、おはようございます。
最終答案が出来上がりましたので
ご指導 ご指摘 アドバイスいただけると幸いです
以下、画像拡大リンク先
https://imgur.com/a/ibAyeZP
なにとぞよろしくお願いします