xy平面上に放物線y=x^2と点P(0,b)を考える。ただしb>0とする。点X(t,t^2)がこの放物線上を動くとき線分BXの長さの最小値を求めよ。」という問題なのですが、解答では、2点間の距離の公式から立式して解いているのですが、私は、点X(t,t^2)における接線を求めて、その直線と点において、点と直線の公式を使って求めようとしましたが、どこが行けないのでしょうか、確かに回りくどいですが、まちがってはいませんよね。点と直線の公式では、
BX^2={(t^2 + b)^2} / 4t^2 + 1
になってしまって、2点間の距離の公式の結果と違ってしまいました。よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

図が書けないのでうまく説明できないかもしれませんが・・・。


点Xにおける接線とPとの距離を求める際に、点と直線の公式を使った場合、点Pと点Xを結ぶ直線は、公式が利用できるとすると、接線にとっては垂線になっていないといけませんよね。でもこの場合、垂直に交わるように直線を引くとそのときの交点は放物線上にあるとは限らなくなってしまうでしょう。

点と直線の距離の公式は、確かに最小の距離を求めている事になりますが、この問題の場合、点Xとの距離ではなくなってしまうので、答えがずれるのでは?と思いますがいかがですか?
    • good
    • 0
この回答へのお礼

ご回答くださってありがとうございます。間違いの元がわかりました。なるほど、点と直線の公式では、点Pの接線と点Xの距離を表すので、確かに接線と垂直になるところだったら、接点である点Pが垂直になるとは限らないですよね。どうもありがとうございますした。

お礼日時:2001/09/29 04:21

s-wordさん、違うよ。


あなたのやり方だと、接線と点Pとの間の距離(最小値)を求めることになる。
このとき交わる点をQとすると、△PQXより、PXとPQは明らかに異なる。
s-wordさんはPQの長さの最小値を考えている。過程が違うのは当たり前。

また「直感」でPX=PQとなるときが最小値となると考えられますが,これを計算するのは骨が折れるので、計算ミスの多い私はやりたくありません。

以上
    • good
    • 1
この回答へのお礼

>s-wordさんはPQの長さの最小値を考えている。過程が違うのは当たり前。

ご回答してくださってありがとうございます。まるっきり誤解していました。間違いを教えてもらって良かったです。

>また「直感」でPX=PQとなるときが最小値となると考えられますが,これを計算するのは骨が折れるので、計算ミスの多い私はやりたくありません。

さしあたって点と直線は間違いだと覚えておきます(^^)
あまり深く考えないようにします。お返事ありがとうございました。

お礼日時:2001/09/29 04:27

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底,{y1,y2,y3}がその双対基底でx=(0,1,0)の時,y1(x),y

[問] ベクトルx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底とする。
{y1,y2,y3}がその双対基底でx=(0,1,0)の時、
y1(x),y2(x),y3(x)を求めよ。

という問題の解き方をお教え下さい。

双対基底とは
{f;fはF線形空間VからFへの線形写像}
という集合(これをV*と置く)において、
V(dimV=nとする)の一組基底を{v1,v2,…,vn}とすると
fi(vj)=δij(:クロネッカーのデルタ)で定めるV*の部分集合
{f1,f2,…,fn}はV*の基底となる。これを{v1,v2,…,vn}の双対基底と呼ぶ。

まず、
C^3の次元は6(C^3の基底は(1,0,0),(0,1,0),(0,0,1),(i,0,0),(0,i,0),(0,0,i))
だと思うので上記のx1,x2,x3は基底として不足してると思うのです(もう3ベクトル必要?)。

うーん、どのようにしたらいいのでしょうか?

Aベストアンサー

>C^3の次元は6(

これが間違え.
「x1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底」
といってるんだから,係数体はRではなく,C.

あとは定義にしたがって,
dualな基底を書き下せばいいだけ.
y1(x1)=1,y1(x2)=y1(x3)=0であって
v=ax1+bx2+cx2と表わせるわけだし,
v=(v1,v2,v3)とすれば,a,b,cはv1,v2,v3で表現できる
#単なる基底変換の問題.

Qxについての方程式x^3+ax^2+bx+8=0が3つの実数解α,β,

xについての方程式x^3+ax^2+bx+8=0が3つの実数解α,β,γ(α<β<γ)を持ち、それらがある順序で等比数列をなし、また、ある順序で等差数列をなす。このとき、定数a,bおよびα,β,γの値を求めよ。

解答には、α<β<γよりα,β,γの順に並んでいる。
     等差数列だから2β=αγ,等比数列だからb^2=acとなる。
     等差数列の考えはこれで良いが、等比の場合b^2=acとa^2=bcとc^2=abという3通りを考えなけ     ればならないみたいです。

     これと、解と係数の関係よりα+β+γ=-a
                  αβ+βγ+γα=b 
                  αβγ=-8を使って解くみたいなんですが、こっから代入しまくるら     しいんですが、どうに始めて最後まで解けばいいかわかりません。
     わかる方いましたら、ぜひ教えてください!!お願いします!! 

Aベストアンサー

>等差数列の考えはこれで良いが、等比の場合b^2=acとa^2=bcとc^2=abという3通りを考えなければならないみたいです。

そんな事はない。

条件から、α^2=βγ、or、β^2=αγ、or、γ^2=αβ。
従って、(α^2-βγ)*(β^2-αγ)*(γ^2-αβ)=0 ‥‥(1) である事が必要十分条件。
αβγ=-8 からαβ=-8/γ、βγ=-8/α、αγ=-8/β であるから (1)に代入すると (α+2)*(β+2)*(γ+2)*(α^2-2α+4)*(β^2-2β+4)*(γ^2-2γ+4)=0となる。
(α^2-2α+4)*(β^2-2β+4)*(γ^2-2γ+4)>0 より(α+2)*(β+2)*(γ+2)=0 つまり 少なくても1つの解は -2であるから原式に代入すると、b=2a ‥‥(2)

同様にして、等差数列の場合も 2γ=α+β、or、2β=γ+α、or、2α=β+γ であるから (2γ-α-β)*(2β-γ-α)*(2α-β-γ)=0 ‥‥(3)
α+β-2γ=(α+β+γ)-3α=-(3α+a)等より、(a+3α)*(a+3β)*(a+3γ)=a^3+3(α+β+γ)a^2+9(αβ+βγ+γα)a+27αβγ=0.
解と係数から、2a^3-9ab+216=0 → (2)から a^3-9a^2+108=0‥‥(4)
(4)を因数分解すると、(a+3)*(a-6)^2=0 となる。 以下、省略。

こういう場合は、出来るだけ“対称性”を使った方が良い。

>等差数列の考えはこれで良いが、等比の場合b^2=acとa^2=bcとc^2=abという3通りを考えなければならないみたいです。

そんな事はない。

条件から、α^2=βγ、or、β^2=αγ、or、γ^2=αβ。
従って、(α^2-βγ)*(β^2-αγ)*(γ^2-αβ)=0 ‥‥(1) である事が必要十分条件。
αβγ=-8 からαβ=-8/γ、βγ=-8/α、αγ=-8/β であるから (1)に代入すると (α+2)*(β+2)*(γ+2)*(α^2-2α+4)*(β^2-2β+4)*(γ^2-2γ+4)=0となる。
(α^2-2α+4)*(β^2-2β+4)*(γ^2-2γ+4)>0 より(...続きを読む

Q因数分解の公式(x+y)^2=x^2+2xy+y^2という公式は=以降

因数分解の公式(x+y)^2=x^2+2xy+y^2という公式は=以降を(x+y)^2-2xyと並び変えると何故-2xyになるのですか??
+2xyにならないのは何故か教えて下さい。

あと、(x+y)^2はx^2+y^2と同じ意味ですか??
(^2は二乗を現わしています。)すいませんあほな事ばかり聞いて(;一_一)

Aベストアンサー

(x+y)^2 = x^2 + 2xy + y^2
上の式において、両側で-2xyとすると
(x+y)^2 - 2xy = x^2 + y^2
となり、左右を入れ替えて
x^2 + y^2 = (x+y)^2 - 2xy
ですね。

x=√5+2, y=√5-2の時
(x+y) = (√5+2) + (√5-2) = 2√5
(x+y)^2 = (2√5)^2 = 2*2 * 5 = 20

2xy = 2*(√5+2)(√5-2) = 2*(5 - 2*2) = 2

よってx^2 + y^2 = (x+y)^2 - 2xy = 20 - 2 = 18
となります。

Q放物線y=x^2+2ax+aがx軸と異なる2点で交わるように、aの値が変化するとき、この放物線の頂点Pの軌跡を求めよ

クリックありがとうございます(∩´∀`)∩

★放物線y=x^2+2ax+aがx軸と異なる2点で交わるように、aの値が変化するとき、この放物線の頂点Pの軌跡を求めよ
(指針)P(x,y)とすると、x,yはaで表わされる。aを消去して、x,yの関係式を導く。

指針・解答を見て解きましたが、途中から分からなくなってしまいました…
分かりやすく説明して頂けると嬉しいです^^
回答よろしくお願いします。

Aベストアンサー

こんばんわ。
与えられた2次関数の式から頂点の座標を求めるところまではいいと思います。
「x軸と異なる2点で交わるように、aの値が変化する」という条件を考えましょう。
これはaがとりうる値の範囲を与えることになります。

通常ならば「判別式」といきたいところですが、
グラフを考えると下に凸になるので頂点がx軸よりも下にあればよいことに気づきます。
この判別式と頂点のy座標の関係は同じことをしめしています。
すなわち「同値」ということです。

頂点のx座標とy座標をそれぞれX,Yとでもおいて、aで表します。
比較的簡単な変形でaを消去できます。
最後に、aの値には範囲がついているので、それをXの値の範囲になるよう置き換えます。

Qx,yが2x^2+3y^2=1をみたす実数のとき、x^2-y^2+xy

x,yが2x^2+3y^2=1をみたす実数のとき、x^2-y^2+xyの最大値を求めよ


解き方を教えてください
よろしくお願いします

Aベストアンサー

x=cost/√2    (1)
y=sint/√3    (2)

とおくとx,yが2x^2+3y^2=1を満たす。
0≦t<2π     (3)

(1),(2)を
z=x^2-y^2+xy
へ代入,
倍角公式をつかって整理すると
z=5cos2t/12+√6sin2t/12+1/12
単振動の合成によって

z=√31sin(2t+a)/12+1/12 (4)

ここにsina=3/√31, cosa=√6/√31
aは0<a<π/4なる角度である。

(4)はsin(2t+a)=1のとき最大値(1+√31)/12をとる。
この時2t+a=π/2即ち
   t=π/4-a/2
このtは(3)の中に入っている。

(4)はsin(2t+a)=-1のとき最小値(1-√31)/12をとる。
この時2t+a=π3/2即ち
   t=π3/4-a/2
このtは(3)の中に入っている。


人気Q&Aランキング

おすすめ情報