はじめての親子ハイキングに挑戦!! >>

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

このQ&Aに関連する最新のQ&A

アンサープラス

相関係数についての具体的な説明や、他の分析手法について掲載されている下記サイトの内容が参考となるかもしれませんね。



・なるほど統計学園高等部 | 複数の変数の関係性を見る
http://www.stat.go.jp/koukou/howto/process/p4_3_ …

A 回答 (3件)

pは確率(probability)のpです。

全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)
    • good
    • 32
この回答へのお礼

ご回答ありがとうございました。
とても参考になりました。

お礼日時:2005/08/12 10:58

pは、普通、小文字で書きます。


 統計学で、検定という処理は、「出した結果が偶然ではない」と言うときに、そのように宣言したときに、誤りである確率を計算します。誤りである最大の確率を、危険率と表現します。
 p<0.05と計算されたとき、その結果が「偶然ではない確立は、0.05すなわち、5%以下」となります。5%は、20分の1ですから、「偶然ではない(有意である、と表現します)」との結果の判断が、20回に1回以下は誤りかもしれないが、それは間違いでも、我慢しましょう、ということいてす。
 統計学では、危険率5%以下で有意(この結果は、偶然ではない)と判断しますが、20回に1回の誤りでは不満だ、という人は、危険率1%以下(p<0.01)で、判定します。

 相関分析の有意差は、相関係数と、データーの数から計算することができます。
 エクセルを利用すると、決定係数を表示できますので、その平方根が相関係数になります。手前味噌になりますが、下記の私の回答を読んでみて下さい。
 http://oshiete1.goo.ne.jp/kotaeru.php3?q=836384

http://oshiete1.goo.ne.jp/kotaeru.php3?q=836384

参考URL:http://oshiete1.goo.ne.jp/kotaeru.php3?q=836384
    • good
    • 21
この回答へのお礼

ご回答ありがとうございました。
参考になりました。

お礼日時:2005/08/12 10:57

P は危険率αのことでしょう。


r=0.90 (P<0.001) は「相関係数が 0.90 と言い切っても危険率が 0.1% 以下である」を意味します。
Excel を統計処理に使ったことはないから知りませんが、ヘルプで危険率を引いてみたら。
    • good
    • 6
この回答へのお礼

ご回答ありがとうございました。

お礼日時:2005/08/12 10:54

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q実験データの分析について

上司にある実験データの分析を指示されました。
しかしやり方がよくわかりません。
サルにもわかるように教えていただければ幸いです。
<内容>
ある部品を高温中に放置してある寸法を測りました。
まず初期値(0時間)のデータがあり、次いで50時間後、100時間後、200時間後・・・のデータがあります。
時間を横軸に、寸法を縦軸にしてグラフを書くと、その曲線はデコボコはあるものの全体的には下降傾向で、50時間ではグンと寸法が小さくなったのですが、その後の変化は段々少なくなり、このまま測定を続ければやがては横軸に平行になるのだろうな・・・と思われるような変化をしています。
上司からの指示は、この「行きつく先の値=安定するところの値」を予測せよというものです。
上司のクチからは「指数関数?」「最小二乗法?」なるコトバも出てきましたが、イマイチわかりません。

数学的に上記の課題を解決する方法を教えてください。
できればサルにもわかるように(スミマセン)。
よろしくお願いいたします。

Aベストアンサー

すぐ役に立つ話にしましょう。
回答No.3でご提案のあったバネとダッシュポットを並列した系は「一次遅れ系」であり、ご質問の文章からも大体それが妥当しそうな感じを受けます。時刻tにおけるものの寸法が時刻t=0での寸法よりどれだけ縮んだかをx(t)とします。すなわち
x(t) = 時刻0における寸法 - 時刻tにおける寸法
すると、上記のモデルは
x(t)= b(1-exp(-t/a))  …(1)
と表せるでしょう。a,bが求めるべき定数です。ここでもちろんx(0)=0, x(t)≧0であり、また、「行きつく先の値=安定するところの値」は、t→∞としたときのx(t)、すなわち
x(∞)=b
を使って、
元の長さ - b
と分かります。

さて、最小二乗法を使って(1)を実測値に当て嵌めてa,bを決めようとすると、これは「非線形最小二乗法」の問題になっていて、このまま正攻法で行くとちょいと面倒です。(ちょいと、だけですが。)

そこで、正攻法ではないやり方を使って計算をずっと簡単にしましょう。まず(1)の両辺をtで微分して

x'= a b exp(-t/a)
より
exp(-t/a) =a x'/b
これを(1)に代入して
x(t)= b(1- ax'/b)
すなわち
x= b- a x'
という関係式(微分方程式)が得られます。さらにこの両辺をtで積分すると、
∫x(s)ds= bt-a x(t)
左辺の∫x(s)dsはs=0~tの定積分です。これをY(t)と書くことにすると、
Y(t) = - a x(t) + b t
ですから、a,bについて一次式になっています。言い換えれば、「横軸をx(t)、縦軸をY(t)にしてグラフを描けば、直線になる」ということです。

ではY(t)はどうやって計算するか。これは数値積分で代用します。具体的には、j回目の測定の時刻をt[j]とし(t[0]=0)、x(t[j])をx[j]、Y(t[j])をY[j] と書くことにします。Y[j](j=1,2,...)を計算するのですが、たとえば台形則で
Y[0]=0
Y[j]=Y[j-1] + (t[j]-t[j-1]) (x[j] + x[j-1])/2
とやれば良いでしょう。これで(x[j],Y[j]) (j=1,2,....)が得られましたから、グラフにプロットしてみましょう。

首尾良くほぼ直線になっていたら、(たとえばExcelの機能を使ってでも簡単に)回帰直線
Y = A x + B
が決められます(ちなみに、この回帰直線を決めるのに使われている計算方法は「線形最小二乗法」です)。そうしたら
a=-A, b=B
で答がでますね。「元の長さ-b」がその答です。

でも、もし直線にならないようなら、最初のモデル(1)は当てはまらないということです。0時間でのデータは捨てて、50時間後あたりをt=0だと読み替えてやり直してみるのも方法です。
それでもダメなら、残念。No.3の言うように寸法の変化の仕方に関する理論をきちんと作るか、あるいは、No.5のようにうんと長時間測定して「行き着く先」を見極めるか、どっちか。

すぐ役に立つ話にしましょう。
回答No.3でご提案のあったバネとダッシュポットを並列した系は「一次遅れ系」であり、ご質問の文章からも大体それが妥当しそうな感じを受けます。時刻tにおけるものの寸法が時刻t=0での寸法よりどれだけ縮んだかをx(t)とします。すなわち
x(t) = 時刻0における寸法 - 時刻tにおける寸法
すると、上記のモデルは
x(t)= b(1-exp(-t/a))  …(1)
と表せるでしょう。a,bが求めるべき定数です。ここでもちろんx(0)=0, x(t)≧0であり、また、「行きつく先の値=安定するところの値」は...続きを読む

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qカイ2乗検定って何??;;

タイトルのとおりですが…大学で統計の基礎な授業を一般教養で受けています。だけど知らない&説明のない言葉がいっぱぃで、全くついていけません(>_<))
「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、有意水準1%としてカイ2乗検定をして判断する、という問題があるのですが、カイ2乗検定自体、授業でちらっと言葉は使ったものの、計算の仕方、使い方の説明等はなく、まったく手がつかずにいます;;ネットでも調べてみましたが、どう使っていいのかまでは分かりませんでした。
知識の無い私でもわかるようなものがあれば教えて下さいっっ!お願いします。

Aベストアンサー

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布とは,二乗値に関する確率分布と考えることができるのですが,この辺もさらりと流して下さい.

例を使って説明します.今,道行く人にA,B,C,Dの四枚のカードの中から好きなもの一枚を選んでもらうとしましょう(ただし,選んでもらうだけで,あげるわけではありません.単にどのカードを選択仕方の情報を得るだけです).一人一枚だけの条件で,160人にカードを選んでもらいました.
さて,ここで考えてみて下さい.4枚のカードには大きな違いはなく,どれを選んでもかまわない.でたらめに選ぶとなれば,どのカードも1/4で,同じ確率で,選ばれるはずですよね? ならば,160人データならば,Aは何枚ほど選ばれる「はず」でしょうか? 同様に,B,C,Dは何枚選ばれる「はず」でしょうか?
……当然,A=B=C=D=40枚の「はず」ですよね? この40枚という数値はでたらめに(無作為に)選ばれたとしたらどんな数値になるかの【理論値】を意味します.

さて,上記はあくまでも理論値であり,実際のデータは異なる可能性があります.というよりはむしろ違っているのがふつうでしょう.そのような実際に観測された数値を【観測値】と呼びます.
仮に理論値と観測値が以下のようになったとします.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40

当然のように観測値と理論値にズレが生じています.しかし現実と理論が異なるのはある意味当然なのですからぴったり一致することなどありえません.そこで,「ある程度一致しているか(ズレは許容範囲か)」を問題にすることになります.しかし,「ある程度」といわれても一体どのぐらいであれば「ある程度」と言えるのでしょうか? なかなか判断が難しいではないですか?
確かに判断が難しいです.そこで,この判断のために統計学の力を借りて判断するわけで,更に言えばこのような目的(理論値と観測値のズレが許容範囲かどうか)を検討するときに使われるデータ解析法がχ2検定なのです.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40
(3)ズレ    +32   -17   -14   + 9
(4)ズレ二乗 1024   289   196   81
(5)(4)÷(2) 25.6  7.225  4.9  2.025

 χ2=25.6+7.225+4.9+2.025=49.25

計算過程をさらりと書いていますが,早い話が観測値と理論値のズレの大きさはいくらになるのか,を求めることになります.最終的には「49.25」というズレ値が算出されました.

さて,この「49.25」というズレ値が許容範囲かどうかの判定をするのですが,ここで,χ2分布という確率分布を使うことになります.詳細は統計学教科書を参考してもらうとして,χ2分布を使うと,○○というズレ値が(ある条件では)どのぐらい珍しいことなのか,という「珍しさの確率」を教えてくれます.
かりに「有意水準1%=1%よりも小さい確率で発生することはすごく珍しいと考える(許容範囲と考えられない)」とすれば,「珍しさ確率」が1%以内であれば「許容範囲ではない」と判断します.

以上,長々と書きました.今までの説明を読めばわかるように,χ2検定とはある理論値を想定した時,実際の観測値がその理論値とほぼ一致しているかどうかを調べるための統計解析法のことです.

χ2検定では,理論値をどのように設定するかは分析者の自由です.その設定の仕方で,χ2検定は「適合度の検定」や「独立性の検定」など異なる名称が付与されますが,本質は同じなのです.

質問者さんの場合は

> 「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、

これを理論値としてうまく設定することが鍵となるでしょう.

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布...続きを読む

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

QEXCELの分散分析表のP-値が...

一元配置の分散分析です。
P-値が
1.02191E-05
のように出力されてしまい、意味が分からないのですが
これはどのように理解したらよいのでしょうか?
ほかにも”数値E-○○”のようなP-値が出てきました。
関連する書籍やWEBサイトなど一通り見ましたが
どこにも説明されていません。
何かのエラーか、分散分析ではできないという意味なのでしょうか?

Aベストアンサー

質問のような表記はPC上の表現では0.0000102191となります。10の何乗という表現をPC上で表す場合、1000は1.0E+3、0.01は1.0E-2となります。

分散分析のエラーではなく、P値が小さいということになりますよ。

Q統計学のP検定とt検定について教えてください。

よく本を読んでいると出てきますが、なんだかよくわかりません。
HP等を使って検索してるのですが、これだ!という回答は得ることができず、いつも途中でオヤスミモードに突入してしまいます。
如何せん頭の活動がトロイ私にとって、計算式を出されてしまうと即効熟睡モードに入りますのでわかりやすく教えてください。
よろしくお願いいたします。

Aベストアンサー

大学院で研究をする際に道具として統計学を使っている者です.

>質問:統計学のP検定とt検定について教えてください.

P検定……? あまり聞き覚えがない検定名ですが,できましたら正式名称あるいはどのような場合に使用される検定か具体例を示して下さい.とりあえず「t検定」について説明します.

t検定とは正式な定義はともかくとして「t分布を利用した有意性検定」と考えていただくとよいでしょう.……ただしこの説明で分かる人はある程度統計学を勉強した人であって,統計学初心者の人にとっては意味不明かもしれません.
抽象的に考えると分かりづらいので,実際にt検定がどのように使われているかを
具体例を使って説明します.

使用例:男性と女性との体重に差があるか?

  ─────────────────────────────
   女性体重  51 48 51 52 45  平均値: 49.4
  ─────────────────────────────
   男性体重  60 58 58 63 70  平均値: 61.8
  ─────────────────────────────

 上の例では「女性群」「男性群」の体重データ,そしてその平均値が載っています.とある女性5人,とある男性5人に対して体重測定を行ったとします.
 質問その1です.「【この】データにおいて,女性と男性とでは体重の平均値に差があるといえますか?」
 
  男性体重-女性体重=61.8-49.4=12.4

 もし平均値に差がないのであれば「差=0」になるはずですが,「12.4≠0」であり,すなわち,男性と女性の体重には差があると断言できます.
 当たり前すぎて何を言っているんだろう,と思われたかもしれません.

 では質問その2です.「【このデータに限らず一般的に】,女性と男性とでは体重の平均値に差があるといえますか? データから【推測せよ】」
 さあどうでしょう? 「ん.どっかの本で男性の方が体重が重いと書いてあったかな?」といった,データ以外の情報を使わないでください.質問1との違いを区別していない人は「そんなのこのデータで男性>女性になっているから,当然,そうだろ?」と主張してしまいますが,これは誤りです.
 一般的に女性と男性の体重差に違いがあるかどうかを本当に調べるのであれば,この世の中の男性と女性全ての体重データを収集しなければなりません.さらには,そのデータはあくまでも「現在」であって,過去や未来のデータではないので,あらゆる時間のデータも収集する必要があります.……そんなのは絶対無理です!
 そのために,取れる範囲の人数のデータを使うしかありません.そこから「推測」するしかないのです.しかし,あくまでも推測でしかなく,そしてその推測が間違っている可能性もあります.この場合では,例えば「(全体としては本当は差がないのだけど)たまたま体重が軽い女性ばかり選んでしまった.たまたま体重が重い体重の男性を選んでしまった」という可能性もあります.
 このようなことを考えると,データの平均値から【即座に】結論を述べることはできません.これはt検定だけではなく,P検定?,あるいは統計学で使われている「検定」の基本的な考え方です.

 t検定に話を戻しますが,この特定データから推測して「一般的に,男性・女性体重に差があるか」を調べることができます.ちなみに上記データをt検定を行うと……

  t値=-4.79 自由度=8 確率=0.001372037

 という結果になります.この結果の読み取り方もこつがいるのですが,解読の流れとしては,

「【偶然で本当は差がないとして】,今回のような「12.4」という差があるということが発生する確率は「0.14」%である」→
「偶然で起きる確率が1%未満である」→
「それって滅茶苦茶珍しくない?」→
「それは偶然じゃないだろう? というよりは前提の『偶然で本当は差がない』というのがそもそも間違い何じゃないの?」→
「ということは,本当は差があるんだ!」

となって「やっぱり,一般レベルでも男性と女性の体重平均値には差がある」吐血論を下すことができるのです.

このように「t検定」の代表的な使用法としては「二つの平均値に本当に差があるか?」の検討があります(これを使えば,ある数値が本当に「0」よりも大きな数値であるか,なども検討できますが,今回は省略します).

大学院で研究をする際に道具として統計学を使っている者です.

>質問:統計学のP検定とt検定について教えてください.

P検定……? あまり聞き覚えがない検定名ですが,できましたら正式名称あるいはどのような場合に使用される検定か具体例を示して下さい.とりあえず「t検定」について説明します.

t検定とは正式な定義はともかくとして「t分布を利用した有意性検定」と考えていただくとよいでしょう.……ただしこの説明で分かる人はある程度統計学を勉強した人であって,統計学初心者の人にとっ...続きを読む

Q統計学 P値

統計を勉強している、OLです。。

P値(P-Value)の意味がわかりません。

0であれば有意性があり5%未満であると有意性が無い?
測定計の信頼性なのでしょうか?

教えてください!
有難うございます!

Aベストアンサー

統計の中で、集団Aと集団Bに差があるか否かを判定することを検定といいます。検定するには、それぞれの集団からいくつかの標本(サンプル)を抽出するわけですから、そのたびごとに数値は違ってきます。
 たとえば、160、161、163、167、170、171cmの6人がいて、この中から三人を選ぶと(抽出)すると、いくらサイコロを振って選んでも(無作為抽出)、そのたびに選ばれる3つの身長(組み合わせ)は違います。

 平均値を計算する場合を想定します。集団のサンプルを全て使えば、誰がやっても、同じ数値になります。しかし、その中からいくつかを抽出すれば、抽出するたびに数値は異なるでしょう。

 これは、集団Aと集団Bの両方にいえます。すなわち、抽出した場合ごとに、その数値の組み合わせは異なるわけです。従って、集団Aと集団Bに違いがあるか否かを検定したとしても、両集団に差があるというのは、確率でしかありません。別の組み合わせが選ばれたら、差が無い可能性がで出来るからです。

 統計学では、差が無い、と言い切って間違える可能性を危険率で表します。通常、5%未満(p<0.05)を取ります(これは統計学的な約束です)。相手に「浮気をした」と20回訊ねると、「浮気をしていない」との答えに、19回信じられるなら、のこりの1回は目をつぶりましょう(差が無いとは限らない、差が無いかもしれないし、有るかもしれない)、ということです。厳しいひとなら、100回に1回なら目をつぶれましょう、というのが統計学の約束事です。
 私の場合は、P<0.01でも許してもらえそうにありませんが。

 統計学は、実際にやって慣れるのが一番です。私は、t-検定と相関分析くらいで、あとはほとんど分かりませんので、釈迦に説法の点は御容赦を。

統計の中で、集団Aと集団Bに差があるか否かを判定することを検定といいます。検定するには、それぞれの集団からいくつかの標本(サンプル)を抽出するわけですから、そのたびごとに数値は違ってきます。
 たとえば、160、161、163、167、170、171cmの6人がいて、この中から三人を選ぶと(抽出)すると、いくらサイコロを振って選んでも(無作為抽出)、そのたびに選ばれる3つの身長(組み合わせ)は違います。

 平均値を計算する場合を想定します。集団のサンプルを全て使えば、誰がやっても、同じ数値になります。...続きを読む

Qデータが正規分布しているか判断するには???

初歩的なことですが。。急いでいます。
おわかりになる方 教えてください。
サンプリングしたデータが正規分布しているかどうかを確認するにはどうすればよろしいでしょうか。
素人でも分かるように説明したいのですが。。
定性的にはヒストグラムを作り視覚的に訴える方法があると思います。今回は定量的に判断する方法を知りたいです。宜しくお願いします。

Aベストアンサー

>機械的に処理してみるとできました。
>でも理屈を理解できていません。
 とりあえず、理屈は後で勉強するとして、有意水準5%で有意差あり(有意確率が0.05以下)であれば、正規分布ではないと結論づけてお終いでいいのではないですか。
>この検定をもっと初心者でもわかりやすく解説しているサイト等ご存じありませんか。
 私が知っている限りでは、紹介したURLのサイトが最も丁寧でわかりやすいサイトでした。
>データの区間を分けるときのルール等ありますでしょうか。
 ヒストグラムを作成する場合、区間距離、度数区分数は、正規的なグラフになるように試行錯誤で行うことが多い(区間距離や度数区分数を本来の分布に則するようにいろいろ当てはめて解釈する。データ個数の不足や、データの取り方、または見かけ上の分布によりデータのばらつきが正しく反映されて見えないことがあるため)のですが、度数区分数は、機械的に、
=ROUNDUP(1+LOG10(データ個数)/LOG10(2),0):エクセル計算式
で区分数を求める方法があります。
 また、区間距離は、=ROUND((データの最高値-最低値)/(度数区分数値-1),有効桁数)で求め、区分の左端は、
=ROUNDUP(データの最低値-区間距離/2,有効桁数)
右端は=ROUNDUP(データの最高値+区間距離/2,有効桁数)
とします。
 区間がと度数区分数が出たら、その範囲にあるデータ数を数えて、ヒストグラムができます。
 
>最小側、最大側は 最小値、最大値を含んだ値としなければならないのでしょうか。
 ヒストグラム作成の処理に関しては、上記を参考にしてください。
 その前に、データの最小値と最大値が、正しくとれたデータか検討するため、棄却検定で外れ値が存在するか否かを検定し、外れ値が存在しないと結論づけられたら、正規分布の検定を行ってみてください。もし外れ値が存在する可能性があれば、そもそも、そのデータの信頼性が失われます。サンプリング手法の再検討(データの取り方に偏りがなかったか、無作為に設定してデータを取っていたか等)をして、再度データを得る必要があります。また、そもそも検定する以前に、データ数が少ないと判断が付かなくなってしまいますので、データ数は十分揃える(少なくとも20~30個)必要もあります。

>機械的に処理してみるとできました。
>でも理屈を理解できていません。
 とりあえず、理屈は後で勉強するとして、有意水準5%で有意差あり(有意確率が0.05以下)であれば、正規分布ではないと結論づけてお終いでいいのではないですか。
>この検定をもっと初心者でもわかりやすく解説しているサイト等ご存じありませんか。
 私が知っている限りでは、紹介したURLのサイトが最も丁寧でわかりやすいサイトでした。
>データの区間を分けるときのルール等ありますでしょうか。
 ヒストグラムを作成する場合、区...続きを読む

Q回帰関係の有意性と回帰係数の有意性の意味

「回帰関係の有意性」と「回帰係数の有意性」についての質問です。

この2つなんですが、それぞれ何故こんなことをするのでしょうか?
また何がわかるのでしょうか?

式を見たりしてもイマイチ理解ができず、困っています。
簡潔に説明して頂けると大変有り難いです(><;)

よろしくお願いします。

Aベストアンサー

>式を見たりしてもイマイチ理解ができず
統計学を数式で説明できるヒトなら可能です。私は、もっぱら国語で理解していますので。それと、回帰分析を何度もやればなんとかなります。といっても、回帰分析の解釈は、専門家でも間違っている例をいくつも知っています。

>「回帰関係の有意性」
有意性の判定を相関係数で行うのなら、x軸とy軸の両者の関係は偶然なのか否かの判定をします。有意であれば、回帰式も適切である、と考えます

>「回帰係数の有意性」
 回帰係数は、重回帰分析の時に、どの因子の影響が強いか、の判断に使えます。総合的なテストをして、国語と数学の点数との重回帰分析をすれば、どちらの能力が有利の判定は、回帰係数の大きいほうが有利、と判断します。

 回帰係数の有意性を利用するような検討は、想定しがたいのですが、間違いありませんか。有意性ではなく、有用性なら、回答は上記です。
 ご質問に忠実に解答すれば、数学と国語の関係の回帰式を日米2カ国で算出、この回帰式が異なること(日米では異なること)を示したい、なんぞの判定は、回帰係数の有意性から判断できます(同じであることは、主張できません)。すなわち、AとBの回帰式は異なる、ことを主張したいときには利用できますが、私の分野では使われた論文を読んだ記憶はありません。
 

>式を見たりしてもイマイチ理解ができず
統計学を数式で説明できるヒトなら可能です。私は、もっぱら国語で理解していますので。それと、回帰分析を何度もやればなんとかなります。といっても、回帰分析の解釈は、専門家でも間違っている例をいくつも知っています。

>「回帰関係の有意性」
有意性の判定を相関係数で行うのなら、x軸とy軸の両者の関係は偶然なのか否かの判定をします。有意であれば、回帰式も適切である、と考えます

>「回帰係数の有意性」
 回帰係数は、重回帰分析の時に、どの因子の...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング