円錐台の普通(僕は中学生です)の求め方は引き算で大きい円錐と小さい円錐を想定して相似から高さを求めてやりますよね。
でも、円錐台の求め方で(上底*上底+下底*下底+上底*下底)*高さ*π*1/3
という式を小学生のときに塾で習いました。そのときはまだ証明は無理。理解できんやろ。と言われ、中3やったらわかるかなぁ?といわれました。
ということで今さっき急に知りたくなってしまいました。
証明方法できるだけ細かめに教えていただけたらうれしいです。
理解できる範囲は一応ベクトル、微積分、三角関数などの普通の分野は習得(?)しております。
No.3ベストアンサー
- 回答日時:
一部,分数式や3次式の因数分解が出てきて中3数学の範囲をこえますが,だいぶ先まで進んでいるようなので,使わせてもらいます。
上底をs,下底をr,円錐台の高さをh,大きい円錐から小さい円錐を切り取ったと考えた時の,その切り取り部分の高さをkとします。
すると,(かけざんを*,累乗は^で表します)
求める体積V=1/3 * πr^2 * (h+k) - 1/3 * πs^2 * k …(1)
ここで,相似の関係から r-s : s = h * k
すなわち
k=sh/(r-s) …(2)
(2)を(1)に代入してkを消去する。
(途中の細かい計算は省きます。ご自分でお試しください。なお,1/(r-s)でくくるという操作が入ります)
V=1/3 * πh/(r-s) * (r^3-s^3)
ここで,因数分解の公式より r^3 - s^3=(r-s)(r^2 + rs - s^2)となるので,結局
V=1/3 * πh(r^2 + rs + s^2)
(証明終わり)
それにしてもそんな公式を小学生に教える塾って…近ごろの塾は恐ろしい。
おぉ簡単に説明をまとめていただき有難う御座います。
すぐに理解できました。
まだ実際は細かいところの式はやってないのですが、数式のこれぐらいのレヴェルなら解けると思いますし。
受験専門の塾に行ってました。先生も必死だったんですね。
No.2
- 回答日時:
上底と呼んでいるものをa、下底と呼んでいるものをbとし、円錐台の高さをh、bを底面半径とする円錐の高さをHとします。
円錐台の体積は、(1/3)π(b^2・H - a^2・(H-h)) 式1)
となります。これはいいですか?
一方、底がb、高さはHの直角三角形を描いて、その途中にaの長さの線を引き、底からこのaまでの高さをhとします。これは円錐台の切った上の円錐も含めての断面図です。
この時、次のような関係が成立します:
h/(b-a)=H/b
従って、
H=bh/(b-a) です。 式2)
式2)を式1)に代入して、Hを消します。
(b^2・H - a^2・(H-h)) の部分だけ考えます。 式1a)
変形すると、
b^2・H - a^2・H + a^2・h
= (b^2 - a^2)・H + a^2・h 式3)
式3)に式1a)を代入して整理すると:
= (b + a)・bh + a^2・h
= (b^2 + a^2 + ab)・h
元の式1)にあった、 (1/3)πをかけて元に戻すと:
(b^2 + a^2 + ab)・(1/3)πh
これで証明されているでしょう。
b^2-a^2=(b+a)(b-a) という因数分解を使っているのです。
それと、三角形の相似関係
No.1
- 回答日時:
この台の高さを高さと呼びます。
小さい方の円錐の高さをxとおくと
上底:下底=x:x+高さ
下底x=上底(x+高さ)
x(下底ー上底)=上底*高さ
x=上底*高さ/(下底ー上底)
大きい方の円錐の高さは、x+高さより
下底*高さ/(下底ー上底)
大きい円錐の体積は
下底*下底*π*1/3*高さ*下底/(下底ー上底)
小さい円錐の体積は
上底*上底*π*1/3*高さ*上底/(下底ー上底)
大きい円錐ー小さい円錐を計算してみると、
π*1/3*高さ*(下底^3ー上底^3)/(下底ー上底)
ここで、因数分解をすると、
π*1/3*高さ*(下底ー上底)(下底^2+上底^2+下底*上底)/(下底ー上底)
よって(上底*上底+下底*下底+上底*下底)*高さ*π*1/3
ずいぶん面白い公式ですね♪頑張って考えちゃいました。
この回答への補足
まず、円錐台の高さを「高さ」と設定するんですね。ちょっとわかりにくいかも・・・
そして、上の小さい円錐(想定した)の高さをxとおくと。ここまではいいんですが、下底*高さ/(下底ー上底)は何を意味しているのでしょうか?大きいほうの円錐の高さでいいのでしょうか?
たしかにこれは中3にならないとわからないわけですね。
考えてみると本当におもしろい式ですね。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報