だれか俺にコンパスを使った正五角形の書き方をおしえて!!!!!!!!!!!!!!!!!!!

A 回答 (2件)

下記のサイトに図入りで解説されています。


うーむ、そうなのかってかんじです。
勉強になりました。

参考URL:http://www.fuzoku.okayama-u.ac.jp/ml/kyouka/math …
    • good
    • 3

まず元になる「円1」を描きます。


次に、その円1に内接するように、円1の半分の半径をもつ
「円2」を描きます。
円1の中心を接点とした円2の接線を引きます。
(この線は円1を2等分する線になるはずですね)
この接線と円1との交点(どちらか)をAとします。
Aと円2の中心を線で結びます。
この線と円2の交点をBとします。
半径ABの円を、Aを中心として描きます。
この円が、円1と交わった二つの点を結びます。
今結んだ線が、正五角形の一辺になります。
あとは、その辺と同じ長さをコンパスでとり、
円1を区切っていって線で結べば出来上がりです。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q正五角形の対角線でできる小さな正五角形の面積は?

一辺が長さ1の正五角形がある。
対角線を5本引くと、その内部に小さな正五角形ができます。
元の正五角形と内部にできる正五角形の面積の比を求めよ。

同じく正17角形の場合はどうなるか?

3時間考えても回答にいたりませんでした。
ヒントでも正解でもよいので、教えてください。よろしくお願いします。

Aベストアンサー

正17角形の場合を考えてみました。 なお計算の便宜上半径1の単位円に内接する正17角形を考えます。

正17角形には119本(17×14/2)の対角線が存在しますが、中央部に小さな正17角形を形成するのに関わるのは、この中で最長の17本だけです。下の図で三角形PQRを色分けしたように、外側の大きな正17角形の1辺と合わせて考えると、底辺が正17角形の1辺で頂角がπ/17の二等辺三角形が17個組み合わされて、小さな正17角形を構成します。

ここで中心部の小さな正17角形の内部にも同様に小さな正17角形の1辺を底辺とし頂角がπ/17の二等辺三角形STUを作ることができます。ここで大小二つの正17角形の相似比はこの大小二つの二等辺三角形の相似比に等しいことは明かなので、この二等辺三角形の高さの比を考えます。Pから底辺QRに垂線PHを、またSから底辺TUに垂線SH'をそれぞれ下ろします。

三角形PQRにおけるPH=1+cos(π/17) またPQ=2cos(π/34) より PH'=cos(π/34)
SH'=PH'tan(π/17)=cos(π/34)tan(π/17)

したがって大小の正17角形の相似比は 
1+cos(π/17):cos(π/34)tan(π/17)

面積比はこの2乗だから
(1+cos(π/17))^2:(cos(π/34)tan(π/17))^2

なお数値計算しておおまかにいうと相似比が約10.65倍、面積比が約113.5倍です。

正17角形の場合を考えてみました。 なお計算の便宜上半径1の単位円に内接する正17角形を考えます。

正17角形には119本(17×14/2)の対角線が存在しますが、中央部に小さな正17角形を形成するのに関わるのは、この中で最長の17本だけです。下の図で三角形PQRを色分けしたように、外側の大きな正17角形の1辺と合わせて考えると、底辺が正17角形の1辺で頂角がπ/17の二等辺三角形が17個組み合わされて、小さな正17角形を構成します。

ここで中心部の小さな正17角形の内部にも同様に小さな正17角形の1辺を底辺とし...続きを読む

Q正五角形のなかにまた正五角形・・・

正五角形の中に星型を描くと小さい五角形ができます。これを繰り返すと無数の五角形ができます(実際はあまり沢山は描けませんが・・・)。またはじめの五角形より大きな五角形を描くことも容易です。このような一連の五角形の大小は等比級数のようになっているように思うのですが,中学程度の数学で簡単に答えは出せますか。

Aベストアンサー

外側の正5角形と内側の正5角形は互いに比が一定の相似なので,一連の正5角形の大小はこの相似比を公比とする等比級数となります.そこでこの相似比を求めてみましょう.

外側の正5角形をABCDEとし,内側の正5角形をA'B'C'D'E'とします.
(AとA',BとB',…,EとE'は中心に対して互いに逆側になるように配置します)
また,外側の正5角形の1辺の長さを1,内側の正5角形の1辺の長さをx(ただしx<1)とします。

【補足】(もし正5角形の性質にあまり詳しくないのなら下の証明を読む前に見て下さい)
正5角形の1つの内角は360°÷5=108°ですが,1つの内角(例えば∠BAE)を対角線で区切った3つの角(この例では∠BACと∠CADと∠DAE)はちょうど3等分されて1つが108°÷3=36°になります.これを確かめるのは簡単で,正5角形ABCDEに外接円を描き,弧BCと弧CDと弧DEの長さが互いに等しいことから,その円周角∠BACと∠CADと∠DAEも互いに等しいとわかります.
これを利用すると正5角形には2種類の互いに相似である二等辺三角形がたくさんあることがわかります.1つは(36°,72°,72°)の二等辺三角形で△ACDや△A'C'D'や△EAD'や△ABC'などが該当します.もう1つは(36°,36°,108°)の二等辺三角形で△AB'Eや△A'C'E'や△ADEなどが該当します.(自分で確かめてみましょう)

△EAD'と△AC'D'は互いに相似で(36°,72°,72°)の二等辺三角形で,△AB'Eは(36°,36°,108°)の二等辺三角形です.AE=D'E=1とC'D'=xからAD'=AC'=B'E=1-xです.よって△EAD'∽△AC'D'よりEA:AD'=AD':D'C'なので,
1:(1-x)=(1-x):x → x=(1-x)^2 → x^2-3x+1=0 → x=(3-√5)/2 (←注:x<1なので±は負のみ有効)
以上より外側の正5角形と内側の正5角形の相似比は,1:(3-√5)/2(内側を1とすると(3+√5)/2:1)であるとわかります.

外側の正5角形と内側の正5角形は互いに比が一定の相似なので,一連の正5角形の大小はこの相似比を公比とする等比級数となります.そこでこの相似比を求めてみましょう.

外側の正5角形をABCDEとし,内側の正5角形をA'B'C'D'E'とします.
(AとA',BとB',…,EとE'は中心に対して互いに逆側になるように配置します)
また,外側の正5角形の1辺の長さを1,内側の正5角形の1辺の長さをx(ただしx<1)とします。

【補足】(もし正5角形の性質にあまり詳しくないのなら下の証明を読む前に見て下さい)
正5...続きを読む

Q正五角形の書き方。

クイズとかの類ではないのですが、一辺の長さが決まっている正五角形を定規とコンパスだけで書くことは出来るのでしょうか。(仮に一辺を30mmとします)

Aベストアンサー

 過去にも類似質問がありましたので,そちらも御覧になって見て下さい。

 ・http://odn.okweb.ne.jp/kotaeru.php3?q=210553
  QNo.210553 コンパスと定規で作図可能な角度

 ・http://odn.okweb.ne.jp/kotaeru.php3?q=404686
  QNo.404686 中学の数学での問題がわかりません

 ご参考まで。

参考URL:http://odn.okweb.ne.jp/kotaeru.php3?q=210553, http://odn.okweb.ne.jp/kotaeru.php3?q=404686

Q正五角形の書き方

一辺が9cmの正五角形を書くには、どうすればいいのでしょうか。
家には、分度器なるものがありません。
(これは、勉強でなく趣味です。)
よい方法を教えて下さい。お願いします。

Aベストアンサー

コンパスがあれば

http://www.sysken.or.jp/buntoku/jewel/compass.htm

参考URL:http://www.sysken.or.jp/buntoku/jewel/compass.htm

Q正五角形と正六角形

正五角形と正六角形の一辺の長さを入力するとその形が出来る みたいなサイトありますか?
あったら教えて下さい。似たようなものでもいいです。

Aベストアンサー

こんなのでよければ。
作ってみました。
五角形だけですが、六角形も作るのは簡単です。
ここをこうしてほしい、などがあればどうぞ。

参考URL:http://www.geocities.jp/narcissusmaster/pentagon.html


人気Q&Aランキング

おすすめ情報