これからの季節に親子でハイキング! >>

今、カップアンドコーンについて調べているのですがわかりません。
軟鋼とアルミで引張試験をして、破断した時にカップアンドコーンという現象の破断面になりました。カップアンドコーンとは、なぜ起きるのですか?あと、カップアンドコーンについて知っている事教えてください。
お願いします。

A 回答 (1件)

う~ん 詳しく説明するとかなり専門的になりますね


専門的な話は僕もよくわかりません(笑)
ですので簡単な話をおば

カップアンドコーンの破断面をよく思い出してみましょう
平な部分と斜めの部分がありますよね
平らな部分というのは垂直応力によって破断しています
これは感覚的にわかるでしょう 

これに対して斜めの部分はせん断応力によって破断しています
最大せん断応力は主軸(試験片を引っ張っている方向)から45°をなす面で
働くって聞いたことありませんか?

カップアンドコーンとは
試験片内部では垂直応力が主に働いていて,
試験片表面部分ではせん断応力が主に働いているということを表していると
言えるでしょう.

材料力学の本などをみて確認してみてくださいな
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q引張試験における破断面について

中実の丸棒において
S45Cとアルミニウムの引張試験を行った際、

S45Cは引張方向に対し水平に破断するのに対し
アルミニウムは引張方向に対し45度の方向に破断するのはなぜですか?

Aベストアンサー

試験片の延性の度合いで大まかな破断面の形状(タイプ)が変わります。

脆性材料>>>延性材料と延性の度合いが変化した時、

A)垂直破壊する物
  ↓
B)カップアンドコーン型破壊する物
  ↓
C)チゼルポイント型破壊
 または、傾斜破壊

S45Cは硬鋼に該当するので脆性材料とみなしてもOKだと思います。なのでA)の形だったのだと思います。

アルミニウムの場合は、純アルミだと仮定すると延性材料なのでC)の形になったのだと思います。


(余談ですが)
私は学生時代に、「球状黒鉛鋳鉄」という脆性材料の引張試験を行ってその破断面を電子顕微鏡で観察する、 ということを実際やってましたが、普通に見た限りでは引張方向に対して水平の断面ですが破断面の最外周部を電子顕微鏡で観察すると45度の傾斜部も確かに存在してました。
いくら脆性材料とはいえ塑性変形もするのだなぁ~という感想を持ったこと思い出しました。^ ^;)

Q降伏点 又は 0.2%耐力とはなんですか?

降伏点 又は 0.2%耐力というものを教えて下さい。
SUSを使って圧力容器の設計をしようとして、許容引張応力とヤング率だけでいいと思っていましたが、どうも降伏点 又は 0.2%耐力というものも考慮しなければいけないと思ってきました。
どなたかご助言お願い致します。

Aベストアンサー

●二つの材料強度
 金属材料の機械的特性のうち、一般に強度と呼ばれるものには
 ・引張強度
 ・降伏強度
 この二つがあります。

 引張強度はその名のとおり、引張荷重を上げていくと切れてしまう破断強度です。
 いわば最終強度です。

●降伏強度とは
 さて、ある材料を用意し、引張荷重を徐々にかけていくと、荷重に比例して
 ひずみ(伸び)が増えていきます。
 ところが、引張強度に達する前に、荷重とひずみの関係が崩れ、
 荷重が増えないのに、ひずみだけ増えるようなポイントが現れます。
 これを降伏と呼びます。

 一般に設計を行う場合は、降伏強度に達することをもって「破壊」と考えます。
 降伏強度は引張強度より低く、さらに降伏強度を安全率で割って、
 許容応力度とします。大きい順に並べると以下のような感じです。

 引張強度>降伏強度>許容応力度

●0.2%ひずみ耐力
 普通鋼の場合は降伏点が明確に現れます。
 引張荷重を上げていくと、一時的にひずみだけが増えて荷重が抜けるポイントがあり
 その後、ひずみがどんどん増え、荷重が徐々に上がっていくようになります。

 ところが、材料によっては明確な降伏点がなく、なだらかに伸びが増えていき
 破断する材料もあります。鋼材料でもピアノ線などはこのような荷重-ひずみの
 関係になります。

 そこで、このような明確に降伏を示さない材料の場合、0.2%のひずみに達した強度を
 もって降伏点とすることにしています。

●二つの材料強度
 金属材料の機械的特性のうち、一般に強度と呼ばれるものには
 ・引張強度
 ・降伏強度
 この二つがあります。

 引張強度はその名のとおり、引張荷重を上げていくと切れてしまう破断強度です。
 いわば最終強度です。

●降伏強度とは
 さて、ある材料を用意し、引張荷重を徐々にかけていくと、荷重に比例して
 ひずみ(伸び)が増えていきます。
 ところが、引張強度に達する前に、荷重とひずみの関係が崩れ、
 荷重が増えないのに、ひずみだけ増えるようなポイントが現...続きを読む

Q真応力と真ひずみの定義(真応力は定義式)を教えてください。

真応力と真ひずみの定義(真応力は定義式)を教えてください。

あと、材料の応力-ひずみ線図において
塑性領域では真応力、真ひずみを使う理由も教えて欲しいです。

Aベストアンサー

試験片を引っ張ると引っ張る方向に延びるとともに、断面が縮みます。応力は荷重を断面積で割ったものであるとすればこの縮み分を考慮に入れようというのが真応力力、真ひずみの考え方です。塑性領域では断面の変化が大きくなるから真応力、真ひずみを用いる必要性が高くなります。

参考URL:http://www.eng.u-hyogo.ac.jp/msc/msc12/HIT/html/tests/stress-strain.html

Q材料のネッキングは何故おこる?

延性のある材料を引張試験にかけると材料にネッキングが生じますが、これは何故なのでしょうか?
それまで均一に伸びていた材料の一部だけが急にくびれる理由が分かりません。
どなたかお分かりの方がおられましたら教えてください、よろしくお願いします。

Aベストアンサー

そもそも、くびれない方が不思議だと思いません?
同じ断面積の平行部を引張って、もし、ちょっとでも細いところが
あると、そこは応力が高いものだからよけい変形する(細長くなる)、
するとより断面が減少、応力が増加してますます変形・・・。

金属材料がこのようにならないのは、加工硬化があるからです。
何かのはずみで他の部分よりもよけいに変形した部分は、断面積は
減少してより応力が高くなりますが、それを補うくらい材料の強度が
自動的にあがります。これが加工硬化。
金属材料のもっとも優れた特徴の一つです。

但し材料は加工硬化でいくらでも強度が上がるわけではなく、
だんだん、その強度の増加加減は減ってきます。
変形による断面積減少に、加工硬化が追いつかなくなった時点で
材料はくびれ始める、ネッキングを生じることになります。

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qレイノルズ数の具体的な値について

円管内流れにおける臨界レイノルズ数について教えてください。
調べても2000~4000などとあいまいにしか出てきません。。
できるだけ具体的な値を知りたいです!!

あと、なぜ臨界レイノルズ数の値ってこんなにばらつきが生じるのでしょうか?その理由についても教えて頂けると嬉しいです。

Aベストアンサー

臨界レイノルズ数に幅があるのは、この数値が計算ではなく
実験によるものだからということなのでしょう。

レイノルズ自身は円管の臨界レイノルズ数は「2300」と
実験で求めたそうですが、後の研究者の実験ではバラつき、
必ずしも2300ではない、との見解がこの幅のある表現に
なってるらしいです。

円管で無く飛行機の翼の実験では、レイノルズ数を増大させた
時と減少させた時とでは観測される臨界レイノルズ数が違い、
「数域」と呼べる幅が出来るそうで、この幅は「履歴現象
(ヒステリシス)」と呼ばれるそうです。
また翼型によっては、臨界レイノルズ数域自体が観測されない
(レイノルズ数の違いがポーラーカーブに差となって現れない)
ものもあるそうです。

Q回転数と流量、揚程、動力の関係について

こんにちは。
ポンプで回転数nと流量Q、回転数nと揚程H、回転数nと軸動力Lの関係について回転数n1、n2としたときQ1/Q2=n1/n2、H1/H2=(n1/n2)^2、L1/L2=(n1/n2)^3とそれぞれ1乗、2乗、3乗の関係がある
解説を見るのですがこの根拠を教えて下さい。

Aベストアンサー

 
根拠は「運動とエネルギーの関係」です。
ポンプを理想化した原理的な表現です。


1.流量。
直径Dの車輪がn回転/秒で回ってる場合の外周の速度は
  V = πD・n  です。
外周に羽根を付けて水を掻くと、水も同じ速度Vで動きますから、

(1) 流量Qは 『 回転数に比例 』 します。
(2) Q = k・n  比例式で表した。kは比例係数。
(3) Q1/Q2 = n1/n2 係数を使わない形の比例式。

 (3)は、(2)の適当な2カ所、Q1=k・n1、Q2=k・n2 を分数にしただけのものです。分数にするとkが消えますよね。kは水車の寸法とか水の抵抗などが絡む現実的なものだから、抽象的な話をするときには出て欲しくない、そこで(3)のように「出てこない形」にするのです。
さらに、分数にすればメートルとかkgとかの次元も約分されて消えてしまうので「ただの数」になります。10rpmと20rpm、1000rpmと2000rpm、分数ならどちらも「2倍」となり、理論的、抽象的に説明をやりやすいのです。



2.揚程
物理の「運動エネルギと位置エネルギの関係」そのものです。物理の教科書にある式、
  1/2・mV^2 = mgH  Hは高さ
これを上記の(3)をマネして、V1のときH1、V2のときH2、の記号を使って分数にすると、gもmも1/2もみんな消えて、
  (V1/V2)^2 = H1/H2
となりますね、見やすいでしょう?
Hは揚程そのものだし、回転数と流速Vは上記1から分かるように比例です(この比例計数も分数で消えてしまうことが理解できますか?)。
  (n1/n2)^2 = H1/H2
となります。



3.動力
動力(ワットとか馬力)は、単位時間のエネルギ量(ジュール)、すなわち ジュール/秒 です。
単位時間に運ばれる流体の質量は
  m =ρQ kg/s
ρは流体の密度kg/m^3、Qはm^3/s
連続して毎秒、位置エネルギmgHを与え続けるから、その動力は
  L = mgH = ρQgH J/s
これもまた分数化すると、
  L1/L2 = (Q1H1)/(Q2H2)
これにQとHの式を入れると、
(以降は自分で。)



(分数にしてただの数にする方法を、無次元化や基準化などとも言います)

 
根拠は「運動とエネルギーの関係」です。
ポンプを理想化した原理的な表現です。


1.流量。
直径Dの車輪がn回転/秒で回ってる場合の外周の速度は
  V = πD・n  です。
外周に羽根を付けて水を掻くと、水も同じ速度Vで動きますから、

(1) 流量Qは 『 回転数に比例 』 します。
(2) Q = k・n  比例式で表した。kは比例係数。
(3) Q1/Q2 = n1/n2 係数を使わない形の比例式。

 (3)は、(2)の適当な2カ所、Q1=k・n1、Q2=k・n2 を分数にしただけのものです。分数にするとkが...続きを読む

Qカットオフ周波数とは何ですか?

ウィキペディアに以下のように書いてました。

遮断周波数(しゃだんしゅうはすう)またはカットオフ周波数(英: Cutoff frequency)とは、物理学や電気工学におけるシステム応答の限界であり、それを超えると入力されたエネルギーは減衰したり反射したりする。典型例として次のような定義がある。
電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
導波管で伝送可能な最低周波数(あるいは最大波長)。
遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。


ですがよくわかりません。
わかりやすく言うとどういったことなのですか?

Aベストアンサー

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です。



電子回路の遮断周波数の場合
-3dB はエネルギー量にして1/2である事を意味します。
つまり、-3dBなるカットオフ周波数とは

「エネルギーの半分以上が通過するといえる」

「エネルギーの半分以上が遮断されるといえる」
の境目です。

>カットオフ周波数は影響がないと考える周波数のことでよろしいでしょうか?
いいえ
例えば高い周波数を通すフィルタがあるとして、カットオフ周波数が1000Hzの場合
1010Hzだと51%通過
1000Hzだと50%通過
990Hzだと49%通過
というようなものをイメージすると解り易いかも。

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です...続きを読む

Qせん断応力ってどういう時に働くのですか?

せん断応力ってどういう状態の時に働くのでしょうか?単軸引張(圧縮)の時は働かないんですよね?
2軸引張(圧縮)の時に働くのでしょうか?純粋せん断状態というのはx、y軸にそれぞれ引張、圧縮が働く時の状態を言うらしいのですが。

Aベストアンサー

一番簡単な例は正方形の板をゆがめて平行四辺形にしたとき働いています.
教科書の説明もそんな感じだと思います.
イメージとしては物体をゆがめる力です.

定義っぽく言えば,面に平行な力から発生する応力をせん断応力といい,
面に垂直な力から発生する応力を垂直応力といいます.
従って,力がかかる面が決まって始めて応力が決まります.
力を面積で割って応力となるのですから,当然ですよね?

で,単軸引っ張りだろうがなんだろうが,物体に力をかければ基本的に垂直応力とせん断応力はセットで発生します.
ただ,せん断応力がゼロになる面というのが1つだけ存在し,主応力面といいます.
棒の単軸引っ張りでは,横に切った断面でせん断応力がゼロになります.
軸力からは面に水平な力が発生しませんから.
唯一…ではないかもしれませんが,例外は静水圧を受けたときだけです.
静水圧ならば,あらゆる面でせん断応力がゼロになります.

つまり,単軸引張で働かないというのは,『軸と垂直な面を考えたときに』という一文が隠れています.
軸と垂直でない面,例えば棒の引っ張り試験なら棒を斜めに切った断面,にはせん断応力が働いています.
斜めの断面には面に斜めに軸力がかかるわけですから,
面の垂直方向と水平方向と両方に力が働いてますよね?
だから斜めの面にはせん断能力が発生します.

実際に,圧縮には強いがせん断には極端に弱いコンクリートの円筒などを軸圧縮すれば,
斜めの亀裂が入って,その断面からすべるように壊れます.
圧縮の垂直応力で壊れる前に,斜めの面に働くせん断応力で壊れるので,
せん断応力が最大になる斜め45度の面で壊れるのです.

しかし,静水圧ではあらゆる面でせん断応力が働きません.
従って,カップ麺の容器なんかを海底深く沈めれば,
形はゆがまずに,ミニなカップ麺の容器ができます.

一番簡単な例は正方形の板をゆがめて平行四辺形にしたとき働いています.
教科書の説明もそんな感じだと思います.
イメージとしては物体をゆがめる力です.

定義っぽく言えば,面に平行な力から発生する応力をせん断応力といい,
面に垂直な力から発生する応力を垂直応力といいます.
従って,力がかかる面が決まって始めて応力が決まります.
力を面積で割って応力となるのですから,当然ですよね?

で,単軸引っ張りだろうがなんだろうが,物体に力をかければ基本的に垂直応力とせん断応力はセット...続きを読む

Qエクセル(Excel)で、数値を一定の有効数字で表示したいのですが…

エクセル(Excel)の書式設定の表示形式では数値を選択すると、小数点以下の桁数を揃えることができますが、同じ感覚で有効数字を一定にして表示させるにはどんな方法があるでしょうか?
例えば、0.01234、0.1234、1.1234、11.1234、111.1234という五つの値を、有効数字3桁を指定して表示して、順に0.0123、0.123、1.12、11.1、111という風に自動的に表示してくれる表示形式、あるいは関数を探しています。
事務計算で小数点以下何桁というのが重要であるように、技術計算ではこのように有効数字を揃えたい場合が多いと思いますので、どなたかご存じの方、お教えください。
なお、指数形式では似たような結果になりますが、わかりにくい表示なので使いたくありません。
よろしくお願いいたします。

Aベストアンサー

◆こんな方法もありますよ
=ROUND(A1,2-INT(LOG(ABS(A1))))

★「0」を考慮すると
=ROUND(A1,2-INT(LOG(ABS(A1)+(A1=0))))


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング