
A 回答 (5件)
- 最新から表示
- 回答順に表示
No.5
- 回答日時:
質問者さんにあえてカウンターパンチを浴びせる回答ですが,なぜ「数式で表す」ことにこだわるのでしょうか?
写像を具体的に特定する方法は,「数式で表す」だけではありません.
たしかに,写像を数式で記述すれば,簡潔にかつ曖昧さなく写像を特定できて,また,計算するときにも扱いやすいので,便利です.
しかし,「書き表したい写像はこういう写像」という理解がものすごく明確であるにもかかわらず,それを「四則演算などの数式で書く」ことはひどく困難,あるいは不可能であることは,しばしば起こります.
たとえば,正整数全体の集合からそれ自身への写像 f を,「f(n) は n 番めの素数」という規則で定めます.このとき,f がどんな写像であるかは,この言葉での説明によって十分に簡潔にかつ曖昧さなく記述されています.しかし,この写像 f を四則演算などを用いた簡潔な「数式」で書き表す方法は知られていません.
写像を考えるときに「数式で表せる写像」だけに考えの対象を絞り込んでしまうことは,たくさんの(数式では表せないものの)有用な写像たちを考えの対象から排除してしまう重大な損失である,という見方もあり得ます.
A から B への全単射 g が数式で表されているときに,B から A への写像 h を「g の逆写像」と言い表すのは,h という写像が何であるかを簡潔にかつ曖昧さなく表現しているので,十分に「よい記述方法」である,という見方だってできます.
z = (x+y) (x+y+1)/2 + x の逆写像を数式で表すというNo.3回答者さんの試みは,それはそれで興味深いです.ただ,そうして得られた数式が,その写像を理解する有用な見方を与えるか,また,その写像の値を具体的に計算するうえで便利か,というのは,また別の問題のように思います.
No.3
- 回答日時:
や, もとの N×N→N によっては逆変換を数式で表現できますよ.
便宜上 0 からにしておくけど, よくあるパターンは z = (x+y) (x+y+1)/2 + x みたいなやつ.
この逆変換を考えるんだけど, 実は √(2z) はほとんど x+y+1/2 になります. だから, うまく Gauss関数なんかを使えば表現できます.
という問題をどこかで見たような気がするなぁ....
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
包含写像の引き戻しの像につい...
-
同相でないことを示す問です。
-
Z[√2]の単数群を求め、素元を全...
-
合成写像
-
写像?写像ってなんですか?
-
グラフが空集合とグラフが存在...
-
連続写像、逆写像 f:S→S′が連...
-
任意の有限群は、適当な置換群 ...
-
おすすめの幾何学の独習本
-
有限アーベル群の基本定理の証...
-
f^(-1)(f(P))=Pを示したい
-
何時間 何分 何秒を記号で表...
-
鋼材について
-
皆さん定義を教えてください 「...
-
履歴書で証明写真を提出した次...
-
数学の問題で丸に真ん中に線が...
-
数学のハット、キャレットの意...
-
数学で出てくる十分性と必要性...
-
∉ ∌ の表示
-
図面に使う記号? 円を十字で区...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
包含写像の引き戻しの像につい...
-
射と写像の違い
-
基本的な事ですが…(単射、全射...
-
LaTeX 写像式を描きたい
-
微分方程式 線形 非線形
-
代数学の質問です[準同型定理]
-
Z[√2]の単数群を求め、素元を全...
-
写像?写像ってなんですか?
-
NからN×Nの全単写
-
濃度のべきについて
-
同型であることの示し方を教え...
-
グラフが空集合とグラフが存在...
-
逆写像と逆像の違いがわかりま...
-
アーベル群の個数
-
初めての複素関数の勉強
-
おすすめの幾何学の独習本
-
写像の記号の、右下の小文字の...
-
f^(-1)(f(P))=Pを示したい
-
行列の問題で困っています
-
誰か…縮小写像についての質問。...
おすすめ情報