デルタ関数δ(x)を-∞~∞まで積分すると1になるというのは分かるのですが、
デルタ関数の2乗を-∞~∞まで積分するとどうなるのでしょうか?
私の考えでは、δ関数はx≠0のとき0の値を持ち、x=0のとき∞の値を持つのですから、
δ関数を2乗しても∞の∞乗=∞で積分値は1のままなんじゃないかと考えました。
友人の考えは、x=0付近に幅h、縦1/hの長方形を考え、h→0としたのが
δ関数であるから、δ関数を2乗すると縦の長さが(1/h)^2=∞^2になり、
積分値も∞倍されるのではないかというものでした。
定義できない、計算できないのではないか、という友人もいましたが、
実際はどうなのでしょうか?
分かりにくい説明で申し訳ありませんが、ご存知の方ご教授下さい。
No.2ベストアンサー
- 回答日時:
とても良い質問ですね。
δ(x)・δ(x)は通常の乗法としては合理的に定義できません。(矛盾が生じます。)
「定義できない」が答えですので、その-∞~∞の積分も定義できません。
f(x)・δ(x) = f(0)δ(x) という式は、f(x)が x = 0 で正則でないと成り立ちません。f(x)がδ(x)の場合はx = 0 が特異点になっていますので、妥当ではありません。
一般に任意の特異関数あるいは超関数どうしの「積」は定義できません。定義できる場合は関数に条件がつきます。
δ(x - a)・δ(x) = 0 (aが0でない場合)は正しいです。
なお、超関数どうしの「積」として合成積(コンボリュージョン)* を採用すれば、任意の超関数g(x)について、g(x) * δ(x) = g(x) が成り立ちます。
これから、δ(x) * δ(x) = δ(x) となります。
「デルタ関数の2乗」は「積」を合成積で定義した場合に意味をもちます。(超関数どうしの合成積は通常の合成積と形式的には同じ式で定義できますが、誤解の生じないように一義的に決めるには特別の注意が必要になります。)
詳しくは 今井功『応用超関数論』I、II (サイエンス社)
合成積を「積」と考える超関数論は
ミクシンスキー『演算子法』2冊(裳華房)
吉田耕作『演算子法 一つの超関数論』(東京大学出版会)
超関数というものはあまり詳しく習っていないのですが、やはり取り扱いが難しいようですね。
積分ができないのは少々残念ですが(笑)、ご紹介頂いた本を図書館で探して少し勉強してみようと思います。
回答ありがとうございました。
No.1
- 回答日時:
δ(x)の性質に
∫[-∞~∞] δ(x)dx
∫[-∞~∞] f(x-a)δ(x-a)dx=f(a)
この2番目の性質でa=0,f(x)=δ(x)としてやれば
∫[-∞~∞] {δ(x)}^2 dx=∫[-∞~∞] f(x)δ(x)dx=δ(0)=∞
が出てきますね。
友人の考えのように考えて
lim[h→+0]∫[-h/2,h/2] (1/h)*(1/h)dx
=lim[h→+0] [{(1/h)^2} x ] [-h/2,h/2]
=lim[h→+0] [{(1/h)^2} h ]
=lim[h→+0] (1/h)=∞
としても同じで結果が得られます。
どちらのやり方でも結果は「∞」になります。
No.2さんのおっしゃるように積分はできないようですね。
考え方によって間違えであってもいろいろな値が出てしまうのは、
難しくもあって面白くもあります。
回答ありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 複素関数と実関数のテーラー展開の違いについて 1 2022/08/09 06:18
- 物理学 ベクトルと座標系につきまして 1 2022/04/03 06:23
- 工学 微積分回路の周波数依存性について答えよ。(時定数との関連について考える) 分かりません。教えてくださ 2 2022/06/18 16:53
- 数学 複素関数にロピタルの定理を使おうとしている回答者は、複素関数論はおろか微積分学もよく分かっていない、 5 2022/12/28 18:02
- 統計学 連続型の確率変数について 6 2023/08/25 08:44
- 数学 複素関数について 点aが特異点である関数を考えるとき、留数が0になる場合は、a点を含む閉曲線での積分 1 2023/02/17 12:39
- 数学 ヒストスプライン平滑化をする際の節点の決め方ついて教えてください。 9 2022/08/08 16:17
- 数学 数学「積分」 2つ,3つの関数から積分による面積計算 そもそも関数同士が交わっていなかった場合どんな 1 2023/03/24 23:53
- 数学 高3の微分についての質問です。 ある説明に「数学IIで扱ったのは多項式関数で、この時極限値は必ず存在 6 2023/07/02 10:04
- 高校 変数の置き換えと範囲の確認につきまして 1 2022/05/21 14:31
このQ&Aを見た人はこんなQ&Aも見ています
-
あなたの「必」の書き順を教えてください
ふだん、どういう書き順で「必」を書いていますか? みなさんの色んな書き順を知りたいです。 画像のA~Eを使って教えてください。
-
大人になっても苦手な食べ物、ありますか?
大人になっても、我慢してもどうしても食べれないほど苦手なものってありますよね。 あなたにとっての今でもどうしても苦手なものはなんですか?
-
とっておきの手土産を教えて
お呼ばれの時や、ちょっとした頂き物のお礼にと何かと必要なのに 自分のセレクトだとついマンネリ化してしまう手土産。 ¥5,000以内で手土産を用意するとしたらあなたは何を用意しますか??
-
ちょっと先の未来クイズ第5問
日本漢字能力検定協会が主催し、12月12日に発表される、2024年の「今年の漢字」に選ばれる漢字一文字は何でしょう?
-
お風呂の温度、何℃にしてますか?
みなさん、家のお風呂って何℃で入ってますか? ぬるめのお湯にゆったり…という方もいれば、熱いのが好き!という方もいるかと思います。 我が家は平均的(?)な42℃設定なのですが、みなさんのご家庭では何℃に設定していますか?
-
音響モード・光学モード
物理学
-
exp(ikx)の積分
数学
-
フーリエ級数の問題で、f(x)は関数|x|(-π<x<π)で同期2πで
数学
-
-
4
exp(-ax^2)*cosx の証明
数学
-
5
e^-2xの積分
数学
-
6
正準量子化はなぜ上手くいくのか
物理学
-
7
音響フォノンで、音響とついている名前の由来について
工学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~12/2】 国民的アニメ『サザエさん』が打ち切りになった理由を教えてください
- ・ちょっと先の未来クイズ第5問
- ・【お題】ヒーローの謝罪会見
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
0.1は10パーセントなら1.0は何...
-
大小2つのサイコロを投げる時...
-
1から9までの番号をつけた9枚の...
-
周囲の長さが一定の二等辺三角...
-
数学Aです。大中小3個のさいこ...
-
エナメル線の電流容量 教えて...
-
周の長さは同じなのに面積が違...
-
大,中,小3個のさいころを投げ...
-
「和と積がともに3である2数」...
-
(a+1)(a-1)(a^2-a+1)(a^2+a+1)...
-
確率の問題です。 1個のサイコ...
-
40秒は何分?の計算式を教え...
-
フーリエ変換 合成積の問題 考...
-
高校数学です。0は全ての整数...
-
行列の積
-
高1です!次の問題を分かりやす...
-
4辺の長さと面積が分かっている...
-
任意の置換は互換の積で表され...
-
代数学 群の問題について
-
積の回文となる2桁の数の積は...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1から9までの番号をつけた9枚の...
-
大小2つのサイコロを投げる時...
-
0.1は10パーセントなら1.0は何...
-
大,中,小3個のさいころを投げ...
-
数学Aです。大中小3個のさいこ...
-
周の長さは同じなのに面積が違...
-
エナメル線の電流容量 教えて...
-
高1です!次の問題を分かりやす...
-
40秒は何分?の計算式を教え...
-
周囲の長さが一定の二等辺三角...
-
測量図で、周囲の長さを算出す...
-
数学についての質問です。(2つ...
-
最大公約数や最小公倍数をだす...
-
デルタ関数について
-
一の読み方でかずと読むかなぁ?
-
高校数学です。0は全ての整数...
-
積付と積込の違い。
-
数列1.2.3.....nにおいて、n≧2...
-
2数の積の最小、最大の数を出す...
-
和が一定のときの積の値の変化...
おすすめ情報