量子力学をきちんと物理的,数学的に理解したいので,独学で量子力学を勉強しています.学部時代は量子力学の授業がなかったこともあり,正直分からないことだらけで不思議に思うことがたくさんあります.
そのうちの一つとして,ある原子内の電子群を考え,ハミルトニアンHを持つ系だとすると,波動関数Ψの絶対値の二乗(存在確率)で存在する原子内にある一つの電子は,あるエネルギ準位(固有値)εしか取り得ないという考え方をシュレディンガー方程式
HΨ=εΨ
で表される固有値問題に帰着するということをとりあえず納得したとすると,線型代数学で出てくる固有値問題
Ax↑=λx↑
のように「ある固有ベクトルx↑に対してある固有値λが決まる」
ということと似ているのでなんとなく分かります.
波動方程式からシュレディンガー方程式を導出していくこともなんとなく分かりました.分からないことは,シュレディンガー方程式の導出として,ハミルトニアンを波動関数に作用させ,ハミルトニアン中に含まれる運動量を微分演算子に代えれば,シュレディンガー方程式になっているということです.この方法は,結果として成り立つだけで,後付けくさいなあと感じました.
過去にも同じような質問をされていた方
http://oshiete1.goo.ne.jp/qa587812.html
がいましたので見てみると,運動量を微分演算子に代えるのは数学的には導けるようですが,その導く過程が物理的には分かりにくいと感じました.
量子力学を勉強する前に基礎知識が不十分なのもあるとおもいます.
なので,量子力学を勉強する前に習得するべき学問は何かと,どの順番で勉強すれば効率がよいかも教えていただきたいです.
(1)量子力学において,運動量を微分演算子に代えることの物理的意味は?もっと一般的に,その他の物理量(角運動量,スピン角運動量など)を演算子に代えることの物理的意味は?
(2)量子力学を勉強する前に習得するべき学問は何かと,それらをどの順番で勉強すれば効率がよいか?
です.長くなりましたが,よろしくお願いいたします.
No.3ベストアンサー
- 回答日時:
行列形式を学習されていないのでしたら、ぜひ先ほどの解析力学の本を
よんだ後に、
「現代の量子力学 上下」J.J.サクライ 吉岡書店
を読まれることをお薦めします。
http://www.amazon.co.jp/%E7%8F%BE%E4%BB%A3%E3%81 …
そうすれば、シュレーディンガー方程式が天下りではなく、きわめて
自然な流れの中で導出されます。
この流れで学習すれば、化学系や工学系でよくある授業の形式である
ド・ブロイの物質波->シュレーディンガー方程式
という流れで感じる天下りによるもやもやが解消されます。
光や電子の粒子性と波動性の二面性というものもい後者の流れでは
うやむやのままですが、前者の流れでは明確な形で説明されます。
度々,ありがとうございます!
本のレビューも読んだところ,量子力学の本質を理解するには良書のようです.(内容は難しいようですが・・・)
解析力学を勉強した後に,この本にも挑戦したいと思います.
No.2
- 回答日時:
行列形式の量子力学は、解析力学の上に構築されています。
ですから、きちんと理解されたい場合には、まず解析力学を学習し、
・ハミルトン形式
・正準変換
・ポアソン括弧
あたりを理解されておいた方がよいでしょう。この辺りを理解して
おけば、運動量と微分の関係、ハミルトニアンと時間変化との関係
などが理解しやすいでしょう。
教科書としては、そのものズバリのタイトルを持った
「量子力学を学ぶための解析力学入門」高橋康著 講談社サイエンティフィク
が良いでしょう。非常に丁寧に書かれた本なので、独学でも読みやすい
と思います。
なぜ、物理量を演算子にかえるのか?という問いですが、これこそが
量子力学の本質そのものといえるでしょう。
系の状態がベクトルで表現でき、物理量の観測が行列に対応し、
観測結果が行列の固有ベクトルに対応するということが量子力学
を古典力学と異なる点を沢山生み出しています。
たとえば行列であるが故に、非可換性が生じ、これが不確定性原理
の原因に成っています。有限次元の行列の場合、固有ベクトルの数が
有限になり、これが例えばスピンなどで離散的な値しか観測されない
ことにつながっています。
また、ニュートン方程式は、基本的に質点にしか通用しない式です。
また、正規直交座標系を用いた場合のみ簡単な形式になるという、
非常に強い制限を持った体系です。
これに対し、行列形式の量子力学というのはもっと汎用的な形式で、
質量の有無を問いませんし、実空間座標系すら要求しません。それも
これも、上記ルールを採用したお陰です。
なお、いわゆるシュレーディンガー方程式は、質点の場合にしか
使えないという意味で、非常に狭い範囲のみで通用する形式です。
ご回答ありがとうございました.
本のご紹介ありがとうございました.解析力学は習ったのですが,古典力学をより一般的に拡張するための道具としか見ていなかったので,量子力学への橋渡しとして解析力学を本質的に勉強していきたいと思います.
行列力学についてはまだ勉強したことがないので,たしかにマルチな視点で量子力学を勉強することで,視野を広げることができそうです.
No.1
- 回答日時:
ファインマン物理学5巻16章にこんな記述があります。
シュレディンガー方程式の記述の後に、
「どこからこれがえられたのか。どこからでもない。これを諸君の知っていることから導き出すことは不可能である。これは、シュレディンガーの精神から生まれたものである。現実の世界における実験事実を理解しようとする彼の苦闘のなかから発明されたものである。」
また、量子力学の考え方(砂川重信著)にも、量子化の手続き(運動量、位置、エネルギーを演算子におきかえること)が何を意味するのかまったくわからないと書いてあります。
後付けでいろいろな解釈があるようですが、本質的には、だれもわからないのではないかと思います。
ご回答ありがとうございます.
実は,古典的な波動方程式からシュレディンガー方程式を導く過程にも少々腑に落ちない点があります.「古典的な波が波動方程式に従うから,量子的な波も従うんじゃないか?そして,数式をガチャガチャいじった結果が実験結果ともよく一致した」ってイメージです.たしかに,天下り的にこの事実を受け止めるのもいいでしょうが,これから量子力学を勉強していく上でおいてけぼりを受けそうな感じもします.
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
好きなおでんの具材ドラフト会議しましょう
肌寒くなってきて、温かい食べ物がおいしい季節になってきましたね。 みなさんはおでんの具材でひとつ選ぶなら何にしますか? 1番好きなおでんの具材を教えてください。
-
家・車以外で、人生で一番奮発した買い物
どんなものにお金をかけるかは人それぞれの価値観ですが、 誰もが一度は清水の舞台から飛び降りる覚悟で、ちょっと贅沢な買い物をしたことがあるはず。
-
メモのコツを教えてください!
メモを取るのが苦手です。 急いでメモすると内容がごちゃごちゃになってしまったり、ひどいときには全く読めない時もあります。
-
牛、豚、鶏、どれか一つ食べられなくなるとしたら?
牛肉、豚肉、鶏肉のうち、どれか一種類をこの先一生食べられなくなるとしたらどれを我慢しますか?
-
ギリギリ行けるお一人様のライン
おひとり様需要が増えているというニュースも耳にしますが、 あなたが「ギリギリ一人でも行ける!」という場所や行為を教えてください
-
量子力学の運動量について
物理学
-
正準量子化はなぜ上手くいくのか
物理学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報