
No.1ベストアンサー
- 回答日時:
よく式の意味が分かりません。
返済金額の合計でもないようです。r=1.9%⇒0.019となります。
べき
http://nkiso.u-tokai.ac.jp/phys/matsuura/lecture …
複利計算を“暗算”で行う
http://www.itmedia.co.jp/bizid/articles/0702/23/ …
(1+r)^3=(1+r)×(1+r)×(1+r)
です。 あとは根性。
No.4
- 回答日時:
実は私もソルバー派なんですが、インストールされていない時のために
代用として『ゴールシーク』が使えます。
(精度が低いのと複数セル変更に対応できない欠点はあります)
使い方はB1セルに
=3/(1+A1) +3/(1+A1)^2 +3/(1+A1)^3 +3/(1+A1)^4 +103/(1+A1)^5-105
と入力して(このままコピペしてOKです)『ゴールシーク』で
数式入力セル B1
目標値 0 (式の最後に105を引いてありますから)
変化させるセル A1
で実行すると0.01941が出てきますよ。
No.3
- 回答日時:
5次方程式を解くのは難しい(不可能な場合もある)ので、右辺をテイラー展開で近似してみてはどうですか?
f(r)=3(1+r)^(-1) +3(1+r)^(-2) +3(1+r)^(-3) +3(1+r)^(-4) +103(1+r)^(-5)
とおく。
r≧0でf(r)が単調減少であるのは明白である。
f(0)=115
f(0.1)≒73.4
よって0<r<0.1の範囲にf(r)=105となるrが存在する。このrを近似的に求める。
テイラー展開による近似
(1+r)^n≒1+nr+n(n-1)(r^2)/2
を使うと
f(r)≒3(1-r+r^2)+3(1-2r+3r^2)+3(1-3r+6r^2)+3(1-4r+10r^2)+103(1-5r+15r^2)
=115-545r+1605r^2
=105
よって
321r^2-109r+2=0
解の公式より
r=0.01946
第3項まで近似したので小数点以下4桁程度の精度はあります。
No.2
- 回答日時:
ペンと電卓だけでrの値を計算するのはかなり難しいと思います。
質問の式ですが、r=(なにかしらの数字のみの式)の形に変形すれば、電卓を使えば計算することができます。両辺に(1+r)^5を掛けてあげれば、5次方程式となりますが、明らかな解がすぐにわかって4次方程式を解けばいい場合を除いて、代数的に答えを導き出すことは不可能(5次方程式の解の公式は存在しません)
やろうとすれば、r=0の場合の右辺の値を計算して、r=0.1の場合の値を出してみてその差などからf(r)=(右辺の式)の値を推測して、rの値を試行錯誤しながら探していくしかないと思います。今回の場合符号が + ばかりですのでまだ数回の試行で答えを出せそうですが、- の符号を含んだりすれば値の動きが複雑になってほぼ手作業では答えが導き出せない可能性もあります。
Excelにはソルバーという機能があります。それを使えば、r=0.0194102316005401という答えが簡単に出ました。なお、ソルバー機能はツールに表示されていなければ、アドインから追加してやる必要があります。その際、OFFICEのインストールCD-ROMが必要になります。
ご回答ありがとうございます。
債券の現在価値を割り引きだすために上記の計算式を使うのですが、高校の時に勉強した数学を忘れてしまい、途方にくれているところでした。
仕事が債券マーケットに関わることであり、その勉強の中に上記の式があり、この計算が出来るようになりたいと考えていました。
「ソルバー」ですね。これまで使ったことはないですが、これを使って計算することにします。
大変お手数かけました。
ありがとうございます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- Excel(エクセル) 条件付書式 Sheet1からSheet2に転記した時の転記ミスを反映させたい 5 2022/05/21 09:52
- 中学校受験 中学受験 算数の記述 4 2022/09/12 13:45
- 数学 数学1の問題がわかりません。 次の関数において、頂点の座標と、[]内のxの値に対するyの値を求めよ。 3 2023/02/13 00:36
- 高校 物理基礎 この(1)〜(3)を解いて欲しいです 答えはないのですが解ける方数人の答えが同じであれば正 2 2022/09/20 08:58
- 数学 情報処理詳しい人!! A4縦のレポート文書に4:3の大きさの横向きの写真画像を貼り付けることにした。 2 2022/12/18 02:30
- Excel(エクセル) A、B、C・・・AA、ABと連番でふりたい、調べても式の意味がわからずパニックになってしまう 1 2023/01/23 19:17
- 物理学 物理基礎で、力学的エネルギーと動摩擦力のことを習ったのですが、 あらい斜面の下から物体を滑り上がらせ 2 2022/09/11 10:12
- Excel(エクセル) エクセル/列追加時、合計行の計算式 7 2023/03/15 11:14
- 中学校 数学の問題について教えてください。 10 2022/12/04 16:28
- Excel(エクセル) 条件付き書式 ある範囲で色がついているセルと同行の別のセルに色を付けたい 4 2022/04/20 07:04
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
0から1になった時の増加率を教...
-
自然対数Ln(x)からxを求める方...
-
分数式の計算で答えがこうなっ...
-
論理代数(ブール代数)の問題で...
-
小学生の算数:何通りかの計算
-
数学1の問題について
-
バスケの得点、フィボナッチ数...
-
逆関数の求め方
-
改良土のCBR
-
一日の加工数の計算
-
反復計算で指数方程式の解を求...
-
イコール
-
不定積分の答えをどこまで出す...
-
9X2乗-6X+1 はどうやった...
-
トマトの個数の問題
-
どのように計算をしてこの答え...
-
SUMPRODUCT関数の疑問
-
【至急】 中3の数学について。 ...
-
Mathematicaで一般形を平方完成...
-
これわかりませんか?
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
0から1になった時の増加率を教...
-
自然対数Ln(x)からxを求める方...
-
1/3乗などの計算方法
-
イコール
-
9X2乗-6X+1 はどうやった...
-
中学 数学 こういう問題の時答...
-
改良土のCBR
-
高校数学 数IIB なぜ急にx^2-2x...
-
時定数の計算を教えてください
-
漸化式での次数下げ
-
逆関数の求め方
-
分数式の計算で答えがこうなっ...
-
中学数学 a※b=1/3(a+b)とする...
-
不定積分の答えをどこまで出す...
-
数1 三角形ABCにおいて、a=2√3...
-
数学 ∑(1からnまで)1/k2乗...
-
小学生の算数:何通りかの計算
-
反復計算で指数方程式の解を求...
-
Mathematicaで一般形を平方完成...
-
Xの近似値を小数で求めたいです。
おすすめ情報