『ボヘミアン・ラプソディ』はなぜ人々を魅了したのか >>

調和振動子の基底状態エネルギーの計算に、α=(kμ/‘h^2)^(1/2)とcを変分パラメーターとして φ(x)=(1+cαx^2)exp(-αx^2/2)を試行関数に使うと、cはどういう値になると予想されるか。理由を述べよ。

* ‘hはのプランク定数です(=h/2π)

という元は英文のマッカーリの演習問題なのですが、答えも英文で

The value of c will equal zero because φ(x)=exp(-αx^2/2) is the exact form of the ground-state wave function.

とあります。要するに基底状態の波動関数は上式で表されるので、それが成り立つ為にはcはゼロになるということだと思うのですが、もっとこの理由について詳しく教えてもらえないでしょうか。レポート課題の解答としてたったの2行で終わらすわけには…と苦しんでますorz どうかよろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

「cはゼロになると予想される。

なぜならcをゼロにすると、試行関数φ(x)が基底状態の波動関数 exp(-αx^2/2) に等しくなるから」です。

「基底状態の波動関数はexp(-αx^2/2)で表されるので、それが成り立つ為にはcはゼロになる」だと、「それが成り立つ為には」のところが少しおかしいです。というのは、一般には、というか変分法を使う大抵の問題では、変分パラメーターを調節してエネルギーを極小にする試行関数が得られたとしても、

 試行関数=基底状態の波動関数

にはなるとは限らないからです。

今の場合は、調和振動子の基底状態の波動関数がすでに分かっている、という特殊な事情があって、しかも、変分パラメータが適当な値をとれば試行関数が基底状態の波動関数に等しくなることが試行関数の式を見ればすぐに分かるので、長たらしい変分計算をしなくてもcがゼロになると予想できます。実際に長たらしい変分計算を実行すればcがゼロになることを確認できますし、レポートの枚数も稼げますけど、「計算しなくても答えが分かるよ」というのがポイントなので、2行で答えられるのなら2行で答えればいいんじゃないかなと私は思います。
    • good
    • 0
この回答へのお礼

回答ありがとうございます>< とても参考になりました。

英文の答えだけで 「基底状態の波動関数はexp(-αx^2/2)で表されるので、それが成り立つ為にはcはゼロになる」 のだと思い込んでいました。変分パラメーターを調節してエネルギーを極小にしても、試行関数=基底状態の波動関数になるとは限らないのですね。ただ今回の場合はcがゼロのとき試行関数が極小になり、それが波動関数と等しくなる ということですね。

レポートはcの計算はせずに、ご丁寧に回答していただいたものと手元にある資料を参考に、少し説明を加えつつ書こうと思います。

本当に助かりました><ありがとうございましたm(_ _)m

お礼日時:2008/07/25 15:02

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。


人気Q&Aランキング

価格.com 格安SIM 料金比較