マンガでよめる痔のこと・薬のこと

3配位の限界半径比は0.155だそうですが、これはどのようにして求めれるのでしょうか?図を描いて色々考えてみたのですが、答えがでませんでした…↓

詳しい方おられましたら求め方を教えて頂けないでしょうか?お願いします。

A 回答 (1件)

3個の円をくっつけた時に、真ん中の隙間に描ける最大の円の半径を求めれば良いと言うことはご存知ですよね?



便宜上、3個の円の半径を√3とすれば、隙間の中心までの距離は2になります。2角が30度と60度になるような直角三角形を作図すればわかりますよね?
とすると、その時に隙間に描ける最大の円の半径は2-√3になります。
その周りの3個の円の半径は√3としましたので、半径比は
(2-√3)/√3=0.1547
となります。
    • good
    • 8
この回答へのお礼

丁寧な解答ありがとうございます。とても良くわかりました。

お礼日時:2008/12/08 10:36

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q正四面体のイオン半径比

四配位の、つまり正四面体のイオン半径比ってどう考えて求めるんですか?
考え方が思い浮かばないんですが、どなたか知ってる人いますか?

Aベストアンサー

ちょっと前に同じ質問をしました。参考URLを見てください。よく分かると思います。ちなみにカチオンを陽イオン、アニオンを陰イオンと読み替えてください

参考URL:http://oshiete1.goo.ne.jp/kotaeru.php3?q=66585

Qカチオンとアニオンの半径比について

今上記のことを勉強していて、正四面体の中心にあるカチオンと正四面体の各頂点にあるアニオンの半径比を計算で求めようとしていますが分かりません 正四面体の各辺を2とおいて(つまりアニオンの半径が1)やっているのですが・・・   ちなみに答えは、アニオンの半径を1にするとカチオンは0.225らしいです 図形を使う問題なので答えるのは難しいと思いますが宜しくお願いします

Aベストアンサー

立体図形は断面で考えるのが一番ですね。

正四面体A-BCDを考えます。Aが頂点でBCDを底面としましょう。
CDの中点をEとします。
頂点A, B, C, Dを中心としてアニオンが配置されているとします。

面ABEで、イオンごと切断した面を考えましょう。
この面(AE=BEの2等辺三角形)内にはまず、
点Aを中心とする半径1のアニオンの断面・・・切断面では円になりますが・・・があります。
同じく点Bを中心として、半径1のアニオンがあります。

題意のカチオンの中心Oは面ABE内に位置するはずですが、
(1)カチオンを表す円は上記の二つの円と接している
(2)頂点Aから辺BEにおろした垂線を考えると、Oはその線上にある(対称性から)
の2つでカチオン(の断面)を表す円は一意に決まります。

以下はOを定めるための数学テクニック上のお話です。
(2)の垂線の足をHとすると、Hは底面BCDの重心になります。
また頂点Bから面ACDにおろした垂線の足をH'とすると、同様にH'は△ACDの重心で、
かつOは線分BH'上に存在します。

この先は力づくでもなんでも解けるのですが、中学校の数学まででやるとすると、
(1)面ABE内で、Hを通りBH'に平行な補助線を引く。この補助線がAEと交わる点をFとおく。
(2)三角形BH'Eと三角形HFEの相似を考え、H'F:FE =2:1と求められる。
(3)これより、AO:OH=3:1と求まる。

AHの長さですが、正四面体の一辺の長さを2とするならピタゴラスの定理より2√6/3と求められます。
AOの長さはその3/4ですから √6/2 です。
これから、Aを中心とするアニオンの半径1を引き算すればよいので
(2.44949..../2)-1=0.22474...

と求まります。
これでいかがでしょう?

立体図形は断面で考えるのが一番ですね。

正四面体A-BCDを考えます。Aが頂点でBCDを底面としましょう。
CDの中点をEとします。
頂点A, B, C, Dを中心としてアニオンが配置されているとします。

面ABEで、イオンごと切断した面を考えましょう。
この面(AE=BEの2等辺三角形)内にはまず、
点Aを中心とする半径1のアニオンの断面・・・切断面では円になりますが・・・があります。
同じく点Bを中心として、半径1のアニオンがあります。

題意のカチオンの中心Oは面ABE内に位置するはずですが、
(1)カチ...続きを読む

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Qヤーンテラー効果について

ヤーンテラー効果について勉強したのですがよく分かりません。もし分かりやすく説明してくれる方がいればよろしくお願いします。

Aベストアンサー

Jahn-Teller効果ですか.むずかしいですよね~.ということで,「わかりやすく,イメージをつかむ」というのをモットーに(!?),ここではJahn-Teller効果の一例である「正方晶ひずみ」のお話をします.


正方晶ひずみをチョー簡単に言ってしまえば,
「Cu錯体がなぜ正方形配位型なのか」
を説明したものなのです.

じゃあ,なんでそうなるのっ?(古っ!)って思いますよね.そこで,結晶場理論をもとにこれを説明します.


そもそも,d錯体って,八面体配位であるか,四面体配位ですよね(ただ,四面体配位は例が少ないので省略します).例えば,Fe錯体なんかはたいてい八面体配位(配位子が6個)って教わりましたね.しかし,Cu錯体やPt錯体などはなぜか正方形の配位をとります.本来であれば,八面体配位をとったほうがよさそうな感じがしますよね.だって,FeとCuって電子が3つしか違わないから.

ここで,Jahn-Teller効果にもとづく正方晶ひずみという効果が生じてきます.これって何かというと,z軸方向の配位距離(金属と配位子との距離)が伸び,xy方向の配位距離が縮まるのです.つまり,八面体を横からグシャッとつぶして縦にビヨーンと引っ張った感じになります.

このような傾向は,d軌道の電子が多いほど起こりやすくなります.
こうやって,もしもz軸方向の配位距離が無限に伸びてしまったら?そう,z軸方向の配位子はどっかに飛んでいってしまい,結果として正方形状に並んだ4つの配位子だけが残ります.

つまり,「Cu錯体が正方形配位であるのは,八面体がひずんでz軸方向の配位子がなくなったからである」といえましょう.


しかし,「なんでd軌道の電子が増えるとz軸方向に伸びるの?」と思われますよね.これは電子軌道理論で説明できます.
八面体のときは,d軌道は3:2に分裂してますよね.低エネルギーで縮退している3軌道はdxy,dyz,dzxで,高エネルギーのそれはd(xx-yy),dzzです.さて,d軌道の電子が増えると,実は二重および三重に縮退していた軌道が分裂して,2:1:1:1とこま切れになってしまいます.具体的には,z因子を含む軌道(dyz,dzx,dzz)の3つのエネルギーが低下します.(なんでそうなるのかについてはムズカシイので省略させてください)


う~ん,なにやらムズカシイお話になってしまいましたね.
でも,「d軌道の縮退が変化する=配位の形も変化する」ということはなんとなく予想できますよね.これを理論的に説明したのがJahn-Teller効果です.


こんな稚拙な説明でわかっていただけたでしょうか.
もし,「この文章のここがよくわからない」などがありましたら,補足をお願いいたします.また,これ以上の内容についてはShriver(シュライバー)著『無機化学』p.354あたりに書いてあるので,そちらをご覧ください.

Jahn-Teller効果ですか.むずかしいですよね~.ということで,「わかりやすく,イメージをつかむ」というのをモットーに(!?),ここではJahn-Teller効果の一例である「正方晶ひずみ」のお話をします.


正方晶ひずみをチョー簡単に言ってしまえば,
「Cu錯体がなぜ正方形配位型なのか」
を説明したものなのです.

じゃあ,なんでそうなるのっ?(古っ!)って思いますよね.そこで,結晶場理論をもとにこれを説明します.


そもそも,d錯体って,八面体配位であるか,四面体配位ですよね(ただ,四...続きを読む

Q六方最密格子の充填率の求め方

六方最密格子の充填率の求め方が分りません。今分っているのは面心立方格子と同じ0.74となることくらいです。
立方格子の場合は、原子を半径rの球体と考えて立方体の体積をrの式で求め、立方体内に含まれる原子の体積を求め、充填率を出しました。
六方の場合は…、同じようにやれると思うのですが、六角柱の体積をどう求めたらいいのか分りませんし、原子も一つがどれだけ立体内にあるのかも想像しにくいです。
解き方分る方ご教授願います。

Aベストアンサー

下記URLを参照ください.

参考URL:http://ja.wikipedia.org/wiki/%E5%85%AD%E6%96%B9%E6%9C%80%E5%AF%86%E5%85%85%E5%A1%AB%E6%A7%8B%E9%80%A0

Q電子配置について

Ni2+(ニッケルイオン)の電子配置と不対電子を示せという問題で僕は、[Ar]3d64s2と考えたのですが・・・答えは[Ar]3d8となっています。電子軌道は4s軌道が満たされてから3d軌道に入るのではないのですか?よくわからないので教えてください。

Aベストアンサー

> 電子軌道は4s軌道が満たされてから3d軌道に入るのではないのですか?
中性の原子では、そうなりますね(CrとCuは例外)。
ですけど、イオンではそうはならないです。

■考え方その1
遷移金属の陽イオンでは、3d軌道が満たされてから4s軌道に入る、と考えます。これらのイオンの4s軌道はふつう空っぽになりますから、第4周期の1族~12族の金属イオンでは、
 3d電子の数=族番号-イオンの価数
という公式が成り立ちます。

■考え方その2
あるいは、中性の原子を基準に考えて、
 軌道から電子が抜けるときには、4s軌道から先に抜ける。
と覚えるのもいいです。

■Ni2+の場合
はじめの考え方に従うと、ニッケルは10族、イオンの価数は2なので、
 3d電子の数=10-2=8
となって、電子配置は[Ar]3d8になります。
 二番目の考え方では、中性のニッケル原子の電子配置[Ar]3d84s2から、電子を2個抜いたのが2価ニッケルイオンなので、4s軌道から電子を2個抜くと、イオンの電子配置は[Ar]3d8になります(Ni3+ならNi2+の電子配置からさらに1個電子を抜いて、[Ar]3d7になります)。

■考え方が破綻する例
Ca+,Sc+,Ti+,V+,Mn+,Fe+,Co+,Ni+,Zn+では、これらの二つの考え方から導かれる答えは一致しません。例えば、考え方その1ではNi+の電子配置は[Ar]3d9になりますが、考え方その2ではNi+の電子配置は[Ar]3d84s1になります。しかしこれらの1価の陽イオンは、きわめて特殊な条件下でしか生成しませんので、通常これらの電子配置が問題になることはありません。
 第4周期の1族~12族の1価金属イオンで重要なものは、K+とCu+です。この二つのイオンに関しては、考え方その1でも考え方その2でも、正しい電子配置を与えます。

■なぜ中性原子とイオンで電子の詰め方が変わるのか?
カリウム(原子番号19)とカルシウム(原子番号20)では、4s軌道の方が3d軌道よりもエネルギーが低いのですけど、じつは、原子番号が20より大きい原子では、エネルギーの順序が逆転して、4s軌道よりも3d軌道の方がエネルギーが低くなります。
 ですので、「エネルギーが低い軌道から電子を詰めていく」というルールに従えば、Sc,Ti,V,Cr,Mn,...では、4s軌道よりも先に3d軌道に電子を詰めていくことになるのですけど、こうやって作った電子配置は、中性原子(と多くの一価イオン)では、正しい電子配置にはなりません。つまり、原子番号が20より大きい中性原子では、「エネルギーが低い軌道から電子を詰めていく」というルールだけでは、正しい電子配置を予測することができません。
 この困難を乗り越えるためには、本当ならば、「電子と電子の間に働くクーロン反発力」を考えに入れなければならないのですけど、これが結構めんどうな話になります。そこで、めんどうな話を避けるために、少し反則気味なのですけど、「エネルギーが低い軌道から電子を詰めていく」というルールだけを使って正しい電子配置を予測できるように、『原子番号が20より大きい原子でも、4s軌道の方が3d軌道よりもエネルギーが低い』ということにしておいて、4s軌道が満たされてから3d軌道に電子が入る、という説明がなされます。
 陽イオンでは、中性原子に比べて電子が少なくなっていますので、電子と電子の間に働くクーロン反発力は、中性原子のそれと比べて小さくなります。そのため、クーロン反発の話を無視しても、正しい電子配置を得ることができます(一価の陽イオンは除く)。本来、4s軌道よりも3d軌道の方がエネルギーが低いのですから、3d軌道が満たされてから4s軌道に電子が入る、ということになります。

■まとめ
中性原子では、4s軌道の方が3d軌道よりもエネルギーが低いので、4s軌道が満たされてから3d軌道に電子が入る。
陽イオンでは、4s軌道よりも3d軌道の方がエネルギーが低いので、3d軌道が満たされてから4s軌道に電子が入る。
中性原子と陽イオンで軌道の順序が変わるのは、電子と電子の間に働くクーロン反発力が陽イオンでは小さくなるからである。

> 電子軌道は4s軌道が満たされてから3d軌道に入るのではないのですか?
中性の原子では、そうなりますね(CrとCuは例外)。
ですけど、イオンではそうはならないです。

■考え方その1
遷移金属の陽イオンでは、3d軌道が満たされてから4s軌道に入る、と考えます。これらのイオンの4s軌道はふつう空っぽになりますから、第4周期の1族~12族の金属イオンでは、
 3d電子の数=族番号-イオンの価数
という公式が成り立ちます。

■考え方その2
あるいは、中性の原子を基準に考えて、
 軌道から電子が...続きを読む

Q活性化エネルギーの求め方が分かりません

ある反応において、35℃における速度定数が25℃の2倍になったという。
この反応の活性化エネルギーはいくらか求めたいのですが、わかりません。
教えてください!

Aベストアンサー

ryota7さんがお答えのように『アレーニウスの式』を利用すれば計算できると思いますよ。

『アレーニウスの式』では速度定数をk、頻度因子をA,活性化エネルギーEa、気体定数R、温度T(絶対温度)、ネピアの定数をeとすると

K=A×eの(-Ea/RT)乗  つまりK=Ae^(-Ea/RT)となります。

ここで、25℃における頻度因子、活性化エネルギーは35℃におけるそれらと等しい(この温度間で変化しない)と仮定します。
そして、25℃の時の速度定数、K(25℃)と35℃の時の速度定数、K(35℃)の比を計算します。

K(35℃)/K(25℃)は、問題の設定から2倍ですから、

K(35℃)/K(25℃)=2=A(35℃)e^(-Ea/RT1)/ A(25℃)e^(-Ea/RT2)となります。

ここではT1は35℃に相当する絶対温度で35+273(k)T2は25℃に相当する絶対温度で25+273(k)です。
また、この式から分かるように頻度因子は約分されてしまいます。

両辺の自然対数(底が10の常用対数ではありません。常用対数を使うのならば換算しなければなりません。)をとると

ln2=(-Ea/RT1)-(-Ea/RT2)

Ea/Rは共通なので

ln2=(Ea/R)(1/T2-1/T1)となります。

ここへT1,T2、Rを代入すればEaは簡単に計算できます。

用いる気体常数の単位に気をつけてください。
私が学生の頃は旧単位系なので1.987を用いていました。

これを用いると計算結果はカロリーで出てきます。
それをキロカロリーに換算して用いていました。
現在はSI単位系つまりKJ/molでないといけないと思いますが、考え方自体は変わらないはずです。

ちなみに、ln2=0.693として計算すると12.6kcal/mol(旧単位系)となりました。

ryota7さんがお答えのように『アレーニウスの式』を利用すれば計算できると思いますよ。

『アレーニウスの式』では速度定数をk、頻度因子をA,活性化エネルギーEa、気体定数R、温度T(絶対温度)、ネピアの定数をeとすると

K=A×eの(-Ea/RT)乗  つまりK=Ae^(-Ea/RT)となります。

ここで、25℃における頻度因子、活性化エネルギーは35℃におけるそれらと等しい(この温度間で変化しない)と仮定します。
そして、25℃の時の速度定数、K(25℃)と35℃の時の速度定数、K(35℃)の比を計算します。

...続きを読む

Q原子価結合法と分子軌道法

原子価結合法と分子軌道法の違いが
いまいち分かりません。
数式ばかり並べられているのを見ても
どこがどう違うのかを言葉でうまく表現出来ません。
本なども読んでみたのですが、どれも難しすぎて、明確にどこがどう違うのかが分かりません。
どなたか分かりやすく、これらの違いを説明してくださいませんか?

Aベストアンサー

レスが付かないようなので、一言。
このサイトのココ↓
http://okwave.jp/kotaeru.php3?q=561839
に大変詳しく、分かりやすい解説が載っていますよ。一度ご参照してみてください。

参考URL:http://okwave.jp/kotaeru.php3?q=561839

Qボルンランデの式

ボルンランデの式とイオン結晶と、その生成にかかわる格子エネルギーの関係を教えてください。

Aベストアンサー

ウィキペディアに解説があります(式の途中でz^+z^-がz^2に置き換わっているのはご愛嬌)。
http://en.wikipedia.org/wiki/Born-Land%C3%A9_equation

納得がいかないところがありましたら、補足欄でお知らせください。

QNaBrの格子エネルギーの計算

(1) Na(固) = Na(気) - 109kJ



(5) Na(固) + 1/2 Br2(気) = NaBr(固) + 361kJ
といった感じで5つの式があり、NaBrの格子エネルギーを求めよ
という問題なのですが、
格子エネルギーはイオン結晶のイオン結合を切断するのに必要なエネルギーのことだと思うのですが、
それは(5)の式の361kJを移行した
NaBr(固) = Na(固) + 1/2 Br2(気) - 361kJ
で361kJが答えというのとは違うんでしょうか?
これだと他の式がある意味がないので違うんでしょうが、
どのように計算すればいいのか分からないので教えてください。

Aベストアンサー

>格子エネルギーはイオン結晶のイオン結合を切断するのに必要なエネルギーのことだと思うのですが

この定義が曖昧です。「切断する」と書かれていますが切断された後の成分イオンの状態についてはどのようなものを考えておられますか。
手元にある化学辞典を調べてみました。
「絶対零度において結晶格子を形成している構成粒子(原子、分子、イオン)を互いに相互作用がなくなるまで引き離すのに必要とするエネルギー」
であると書かれています。凝集エネルギーと同じものです。
構成粒子を互いに相互作用がなくなるまで引き離すということがポイントです。
イオン結晶であれば「正、負のイオンが無限の遠方にある状態に持っていく」ということです。

>NaBr(固) = Na(固) + 1/2 Br2(気) - 361kJ

右辺はNa(固)、Br2(気)になっています。
Na(固)はNaの集合体です。
Br2(気)は分子です。
結合エネルギーは右辺がバラバラのイオンになっていなければいけません。
NaBr(固)=Na++Br-+QkJ

そのために
Na(固)→Na(気)→Na+
(1/2)Br2(気)→Br→Br-
というステップを考えているのです。

化合物1molを成分元素の単体から作るとした時の反応熱は生成熱と呼ばれているものです。

(1)は金属ナトリウムの格子エネルギー(凝集エネルギー)を表していることになります。

御質問は格子エネルギーを実験的に求める方法に関するものです。
静電エネルギーの値を求める方法は固体物理の教科書(例えばキッテルの本)に載っています。
マーデルング定数という量も参考にしてください。
NaCl型の結晶でのマーデルング定数の値は1.7476です。
キッテルの本に載っているNaBrの格子エネルギーの実測値は730kJ/molです。

おまけ
キッテルの教科書ではNaClの格子エネルギーの説明の文中に「NaCl1分子当たり」という言葉を使っています。
章のタイトルが「イオン結晶」になっているのに文中で「分子」という言葉を使っているのです。気に入りません。こういうのは物理の人に共通の使い方のようです。


>格子エネルギーはイオン結晶のイオン結合を切断するのに必要なエネルギーのことだと思うのですが

この定義が曖昧です。「切断する」と書かれていますが切断された後の成分イオンの状態についてはどのようなものを考えておられますか。
手元にある化学辞典を調べてみました。
「絶対零度において結晶格子を形成している構成粒子(原子、分子、イオン)を互いに相互作用がなくなるまで引き離すのに必要とするエネルギー」
であると書かれています。凝集エネルギーと同じものです。
構成粒子を互いに相互作...続きを読む


人気Q&Aランキング