人に聞けない痔の悩み、これでスッキリ >>

蛍光X線のエネルギーを知りたいのですが、
LXα1…レベルまで細かく乗っているデータベースをご存知の方いたら教えていただけませんか?
外国のサイトでももちろんかまいません。
宜しくお願いします。

A 回答 (1件)

NIST: X-Ray Transition Energies Database


http://physics.nist.gov/PhysRefData/XrayTrans/in …
    • good
    • 0
この回答へのお礼

有難うございます。助かりました。

お礼日時:2008/12/28 16:14

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

QX線回折(XRD)分析の半値幅について

現在粉末用のXRD装置を使用しているのですが、半値幅に含まれる情報に関して教えてください!
参考書などを呼んでいると、結晶性のピークに着目した場合、ピークの半値幅が大きくなるほど結晶子サイズは小さいことを意味すると書いてあり、これはなんとなくわかりました。
しかし、非結晶性のものを測定すると一般的にはブロードピークとなるものが多いかと思うのですが、相互関係がわかりません・・・。非結晶性のものは結晶子サイズが小さいということではないですよね?

段々結晶子サイズが小さくなっていった時に、少しづつピークはブロードに近づくとは思うのですが、
・結晶子サイズが小さくなっている
というのと、
・非結晶性のものである
というものの区別はどうやって判断したらよいのですか?ある程度は半値幅を超えたら非結晶性のものとかいう基準があるのでしょうか?

Aベストアンサー

半値幅から微結晶サイズを求めるシェラーの式は、固体中にある
微結晶のサイズを求めるための式です。適用できる微結晶サイズは
nmオーダから0.1μmまでの範囲です。この点に注意してください。

さて微結晶サイズが小さくなると半値幅はサイズに反比例して拡がり、
ピークはだんだん鈍くなります。さらに小さくなるとブロードで
ガラス等による散乱パターンに似たものになることも有ります。

ピークの拡がりは、1)結晶が十分な大きさで無いこと、2)結晶に
欠陥があるか、または空間的な規則性が低いか、3)装置による制約
から来ます。
原因3)は基準物質を使い補正計算をしてある程度除去することが
できます。
原因1)の影響を考慮したのがシェラーの式ですが、常に原因2)の寄与
も含まれています。
原因2)は小さくても結晶で有れば散乱強度を決める構造因子は定まります。
ここで構造因子に欠陥や小さくなることで発生した構造の乱れを組込めば
非晶性の広がったハローを再現できるかも知れません。
しかし、非晶性物質では構造の乱れは大きすぎ、結晶学的な構造因子は
もう決められません。
その代わりに、原子の相互配置を確率的に表した動径分布関数が散乱強度
の計算に導入されます。
一つの物質からの散乱強度の計算に、ここまでは構造因子方式、ここからは
動径分布関数方式という使い分けはされていません。

したがって、結晶子サイズが小さくなっているというのと、非結晶性の
ものであるということの明確な境界は無いように見えます。
当然、ある半値幅を超えたら非結晶性のものとかいう基準は有りません。

溶融体を急冷して結晶化させようとした場合、できたモノを欠陥だらけの
極微細結晶からなるとするか、非晶質になったと解釈するかは半値幅だけ
からはできないと思います。

半値幅から微結晶サイズを求めるシェラーの式は、固体中にある
微結晶のサイズを求めるための式です。適用できる微結晶サイズは
nmオーダから0.1μmまでの範囲です。この点に注意してください。

さて微結晶サイズが小さくなると半値幅はサイズに反比例して拡がり、
ピークはだんだん鈍くなります。さらに小さくなるとブロードで
ガラス等による散乱パターンに似たものになることも有ります。

ピークの拡がりは、1)結晶が十分な大きさで無いこと、2)結晶に
欠陥があるか、または空間的な規則性が低...続きを読む

Qラジカル重合において、高分子量の重合体を得るための条件

高分子化学の分野の質問です。
ラジカル重合において、分子量の高い重合体を得るためにはどのような条件が必要でしょうか?
もしお分かりになる方がいらっしゃいましたら教えていただきたいです。お願いします。

Aベストアンサー

ラジカル重合では、生長反応速度はラジカルとモノマーが反応するのですから、モノマー濃度とラジカル濃度の積に比例します。停止反応はラジカル同士が反応する2分子停止を考えると、ラジカル濃度の2乗に比例します。
分子量を高くしたい場合は、生長速度を速くして、停止速度を遅くしなければなりません。生長反応が100回起こる間に1回の停止反応が起こってしまうよりも1回の停止反応が起こるまでに生長反応が1000回起こる方が、高分子量のポリマーが生じるはずです。
ラジカル濃度を高くすると、停止反応には2乗で効いてしまうので、生長反応も速くなりますが、停止反応の方がより速くなり、分子量は低下します。
よって、高分子量にするためにはモノマー濃度を高くして、ラジカル濃度が低い状態で重合することです。
また、ラジカル重合では、溶媒、モノマー、ポリマーへの連鎖移動反応も生じます。
連鎖移動が起こると、そこで生長が止まってしまうので、分子量は低下します。
意識的に連鎖移動剤は使っていないときには、連鎖移動反応は、生長反応や停止反応に比べ、活性化エネルギーが高いので、低い温度で重合を行うほど、生長反応が優先し、分子量は高くなります。
一方、停止反応は、一般的にポリマーラジカル同士の反応だとすると、系の粘度を高くしてやれば、運動性が低下し衝突頻度が低下します。
モノマーは一般に低分子なので、ポリマーラジカルほど運動性の低下が起こりません。
このような場合、生長反応に比べ、停止反応が阻害されるので、分子量は高くなります。これをゲル効果といいます。
また、反応形態をエマルション重合にすれば、簡単に高分子量物を得ることができます。
エマルション重合は、水層でラジカルを発生させモノマーミセルの中にラジカルが飛び込んだときに重合が開始します。次のラジカルが水層から飛び込んでこない限り、停止反応は起こりません。
界面活性剤などの不純物が混入する。生じるポリマーが球状などの制約はありますが、高分子量物を得るのには最も簡単な方法です。
リビングラジカル重合というだけで、必ずしも高分子量物が得られるとは限りません。むしろ比較的分子量の低いものを作るのに適していると思います。分子量分布の制御にはよいと思います。

ラジカル重合では、生長反応速度はラジカルとモノマーが反応するのですから、モノマー濃度とラジカル濃度の積に比例します。停止反応はラジカル同士が反応する2分子停止を考えると、ラジカル濃度の2乗に比例します。
分子量を高くしたい場合は、生長速度を速くして、停止速度を遅くしなければなりません。生長反応が100回起こる間に1回の停止反応が起こってしまうよりも1回の停止反応が起こるまでに生長反応が1000回起こる方が、高分子量のポリマーが生じるはずです。
ラジカル濃度を高くすると、停止反応には2...続きを読む