

こちらに計算ミスがあれば、誠に申し訳ありません。
二項分布とポアソン分布、それぞれで求まる確率が2倍も異なるので、困っています。
次のような問いがあるのです。
「くじが当たる確率は1%であり、5回くじを引くとする。当たりが3回出る確率を、ポアソン分布を用いて近似的に計算せよ。」
二項分布でも解けなくはない問いです。
5C3×1%×1%×1%×99%×99%=0.000009801
ところがこれを、ポアソン分布を用いて計算せよとのことですので、
ポアソン分布の確率関数p(x)は、λ(ラムダ)を用いれば、
自然対数の底eのマイナスλ乗と、λのx乗との積を、xの階乗で除した式で表されますので、
(あえて関数式を書けば p(x)=(λ^x)*exp(-λ)÷x! )
λ=0.05を代入し、p(3)を求めればよいわけですから、
p(3)= 0.05^3 × exp(-0.05) ÷ 3!
≒ 0.000125 × 0.9512 × 6
≒ 0.0000198
と求まります。
これでは、ポアソン分布を用いて近似的に計算せよと言いながら、求まる確率が2倍も違う点で、とても近似的に計算しているとは思えません。
ポアソン分布の関数式を覚えていないもしくは度忘れした解答者がとりあえず二項分布で解いてみても採点者は一発で間違いと分かるように数値を設定したと考えることもできますが、ポアソン分布の精度が疑わしくなります。
あるいは、こちらの計算ミスがあれば、気づかずにいるミスを直ちに改めたいと思いますので、どなたかお答えを願います。

No.2
- 回答日時:
計算はまちがっていません。
ポワソン分布は2項分布の極限であるにもかかわらず、nがたった5回でも確率が2倍程度しか違わないことのほうが、私にすれば驚きです。けっこうよくあってると思うけどなあ。その秘密はp=0.01と小さいことにあると思います。。。
私の計算が間違ってないと保証していただきまして、ありがとうございました。また、
「nがたった5回でも確率が2倍程度しか違わないことのほうが、私にすれば驚き」
というご感想は大いに参考にさせていただきたく思います。
No.1
- 回答日時:
ポアソン分布は, 二項分布において np を固定したまま n を∞に飛ばしたときに得られたと思います. つまり, ポアソン分布で二
するには「n が大きい」ということが必要なのではないでしょうか.お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数学B確率についての質問です ...
-
なぜ正規分布の標準偏差は約6...
-
正規分布について
-
t値とp値について
-
標準偏差の1.5SD
-
4桁の暗証番号について。 わか...
-
白玉4個と赤玉2個が入っている...
-
同じクラスになる確率
-
[数学] 無限大÷無限大の答えは?
-
53枚のトランプに関する確率問題
-
数学の参考書に コインを2枚投...
-
【確率の問題】
-
確率統計の問題
-
白玉1個、赤玉2個が入っている...
-
大中小のサイコロの積が6の倍数...
-
赤玉、青玉、白玉がそれぞれ2...
-
場合の数、確率 46 一橋大学 再...
-
場合の数、確率 46 一橋大学
-
確率 解説が理解できない
-
【 数Ⅰ 反復試行 】 ※以前に質...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報