人に聞けない痔の悩み、これでスッキリ >>

「x軸の正の向きとなす角」という表現について。
 
「直線y=kx(kは定数)とx軸の正の向きとがなす角をα(0≦α≦π)とおくと……」
みたいな記述を、数学の問題集の解説とかでよく見かけます。
これにもし、【正の向き】って言葉が欠けていたら、例えば「直線y=-x」の場合、
3π/4(135°)とπ/4(45°)のどちらでもOKってことになるからマズイ、
と昔学校で教わって、当時は納得したのですが、
よく考えてみると、【正の向き】って指定されてても、
上の例だと、確かに左回りに考えれば3π/4ですが、右回りに考えればπ/4で、
何の解決にもなっていないように思えます。
「直線y=kx(kは定数)の【y≧0の部分】とx軸の正の向きとがなす角をα(0≦α≦π)とおくと……」
みたいに書くべきだと私は思うのですが、そのように書いてある解答・解説を見たことがありません。
私は何か間抜けな勘違いをしているのでしょうか?

A 回答 (5件)

角度の測り方は反時計回りが正と決められています。

    • good
    • 4

角度の測り方は、反時計回りが正と決められています。

よって、
その例だと、左回りに考えれば 3π/4、右回りに考えれば -π/4 です。
3π/4 と -π/4 は、差が 2π の整数倍ではありませんから、異なる角です。
角が二つ出てきてしまう理由は、直線が二つの半直線からなることによります。
だから、これだけでは、解決になっていないと言えば、なっていないのですが…
そこを解決するために、0≦α≦π という条件が付けてあるのです。
    • good
    • 0

> 私は何か間抜けな勘違いをしているのでしょうか?


>
はい、たぶん。ベクトルは向きと長さでできていて、ナス角を測るには向きが必要です。時計は必要ないようです。

参考URL:http://ja.wikipedia.org/wiki/%E3%83%99%E3%82%AF% …
    • good
    • 0

x=cosθ


y=sinθ
とした場合、

θ=π/6のときに、x=√3/2、y=1/2、となり、
θ=-π/6のときに、x=√3/2、y=-1/2、となりますよね?

つまり、反時計回り(左回り)が正の向きなのです。
直線y=-xを右回りに考えると、-π/4となってしまいます。
    • good
    • 0

私もよく間違えます。


前使ってたCADと今使ってるCADと正の回転方向が逆なのです。
日本人とか、たいていの文明って北半球なので、ねじとかを含め
右回転が正と思っていました。
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q数IA 直線とX軸の正の向きとのなす角θ

該当の問題ですが、下記の認識で正しいかどうかだれか教えてください。

問題;
直線√3x+y=1とx軸の正の向きとなす角θを求めなさい。

回答;
120°

私の認識;
y=-√3+1に式を変形すると、傾きが-√3の直線になる。
傾き=tanと考えると、tanθ=-√3とはθ=120°
よって、答えは120°
この認識って正しいでしょうか?

Aベストアンサー

それも、もちろん正しいのだけれど、世間的には
「60°」と答える人のほうが多いような気がします。
x軸は「正の向き」と半直線で指定されていますが、
直線 √3x+y=1 のほうは向きが決められていない
ですからね。人情としては、鋭角のほうに目が行きます。

Q元素と原子の違いを教えてください

元素と原子の違いをわかりやすく教えてください。
よろしくお願いします。

Aベストアンサー

難しい話は、抜きにして説明します。“原子”とは、構造上の説明に使われ、例えば原子番号、性質、原子質量などを説明する際に使われます。それに対して“元素”というのは、説明した“原子”が単純で明確にどう表記出来るのか??とした時に、考えるのです。ですから、“元素”というのは、単に名前と記号なのです。もう一つ+αで説明すると、“分子”とは、“原子”が結合したもので、これには、化学的な性質を伴います。ですから、分子は、何から出来ている??と問うた時に、“原子”から出来ていると説明出来るのです。長くなりましたが、化学的or物理的な性質が絡むものを“原子”、“分子”とし、“元素”とは、単純に記号や名前で表記する際に使われます。

Q2直線のなす角

高校数学IIからの質問です。
『(1)y=-1/3x+2、(2)y=1/2x+1のなす角θ(0<θ<π/2)を求めよ。』という問題です。

僕は、切片は無関係なので、(1)の直線がx軸と第4象限でなす角αと(2)の直線がx軸の正の向きとなす角βを足して、tan(α+β)として考えました。tanα=-1/3、tanβ=1/2なので、ここで制限の加法定理を用いて計算すると、tan(α+β)=1/7となり、ここで行き詰りました。
解答解説では二つの直線ともx軸の正の向きとなす角をα、βとしてtan(α-β)で計算していました。この考え方は理解できるのですが、僕の考え方の何が間違っているのかわかりません。
よろしくお願いします。

Aベストアンサー

(tanαの値)=(直線の傾き)
と覚えているんだと思いますが
これが成り立つのはαがx軸の正の向きから左回りに測った角度の場合です。

質問者さんはx軸の正の向きから右回りに測った角をαと置いたようなので
(tanαの値)=(直線の傾き)にはなりません。
この場合
(tan(-α)の値)=(直線の傾き)
になります。

Q分子結晶と共有結合の結晶の違いは?

分子結晶と共有結合の結晶の違いはなんでしょうか?
参考書を見たところ、共有結合の結晶は原子で出来ている
と書いてあったのですが、二酸化ケイ素も共有結合の
結晶ではないのですか?

Aベストアンサー

●分子結晶
分子からなる物質の結晶。
●共有結合の結晶
結晶をつくっている原子が共有結合で結びつき、
立体的に規則正しく配列した固体。
結晶全体を1つの大きな分子(巨大分子)とみることもできる。

堅苦しい説明で言うと、こうなりますね(^^;
確かにこの2つの違いは文章で説明されても分かりにくいと思います。

>共有結合の結晶は原子で出来ている
先ほども書いたように「原子で出来ている」わけではなく、
「原子が共有結合で結びついて配列」しているのです。
ですから二酸化ケイ素SiO2の場合も
Si原子とO原子が共有結合し、この結合が立体的に繰り返されて
共有結合の物質というものをつくっているのです。
参考書の表現が少しまずかったのですね。
tomasinoさんの言うとおり、二酸化ケイ素も共有結合の結晶の1つです。

下に共有結合の結晶として有名なものを挙げておきます。

●ダイヤモンドC
C原子の4個の価電子が次々に4個の他のC原子と共有結合して
正四面体状に次々と結合した立体構造を持つのです。
●黒鉛C
C原子の4個の価電子のうち3個が次々に他のC原子と共有結合して
正六角形の網目状平面構造をつくり、それが重なり合っています。
共有結合に使われていない残りの価電子は結晶内を動くことが可能なため、
黒鉛は電気伝導性があります。
(多分この2つは教科書にも載っているでしょう。)
●ケイ素Si
●炭化ケイ素SiC
●二酸化ケイ素SiO2

私の先生曰く、これだけ覚えていればいいそうです。
共有結合の結晶は特徴と例を覚えておけば大丈夫ですよ。
頑張って下さいね♪

●分子結晶
分子からなる物質の結晶。
●共有結合の結晶
結晶をつくっている原子が共有結合で結びつき、
立体的に規則正しく配列した固体。
結晶全体を1つの大きな分子(巨大分子)とみることもできる。

堅苦しい説明で言うと、こうなりますね(^^;
確かにこの2つの違いは文章で説明されても分かりにくいと思います。

>共有結合の結晶は原子で出来ている
先ほども書いたように「原子で出来ている」わけではなく、
「原子が共有結合で結びついて配列」しているのです。
ですから二酸化ケイ素Si...続きを読む

Q蒸気圧ってなに?

高校化学IIの気体の分野で『蒸気圧』というのが出てきました。教科書を何度も読んだのですが漠然とした書き方でよく理解できませんでした。蒸気圧とはどんな圧力なのですか?具体的に教えてください。

Aベストアンサー

蒸気圧というのは、主として常温付近で一部が気体になるような物質について用いられる言葉です。

液体の物質の場合に、よく沸点という言葉を使います。
物質の蒸気圧が大気圧と同じになったときに沸騰が起こります。
つまり、沸点というのは飽和蒸気圧が大気圧と同じになる温度のことを言います。
しかし、沸点以下でも蒸気圧は0ではありません。たとえば、水が蒸発するのは、常温でも水にはある程度の大きさ(おおよそ、0.02気圧程度)の蒸気圧があるためにゆっくりと気化していくためであると説明できます。
また、油が蒸発しにくいのは油の蒸気圧が非常に低いためであると説明できます。

さきほど、常温での水の飽和蒸気圧が0.02気圧であると述べましたが、これはどういう意味かと言えば、大気圧の内の、2%が水蒸気によるものだということになります。
気体の分圧は気体中の分子の数に比例しますので、空気を構成する分子の内の2%が水の分子であることを意味します。残りの98%のうちの約5分の4が窒素で、約5分の1が酸素ということになります。

ただし、上で述べたのは湿度が100%の場合であり、仮に湿度が60%だとすれば、水の蒸気圧は0.2x0.6=0.012気圧ということになります。

蒸気圧というのは、主として常温付近で一部が気体になるような物質について用いられる言葉です。

液体の物質の場合に、よく沸点という言葉を使います。
物質の蒸気圧が大気圧と同じになったときに沸騰が起こります。
つまり、沸点というのは飽和蒸気圧が大気圧と同じになる温度のことを言います。
しかし、沸点以下でも蒸気圧は0ではありません。たとえば、水が蒸発するのは、常温でも水にはある程度の大きさ(おおよそ、0.02気圧程度)の蒸気圧があるためにゆっくりと気化していくためであると説明できま...続きを読む

Qイデオロギーって何ですか???

イデオロギーとはどんな意味なんですか。
広辞苑などで調べてみたのですが、意味が分かりません。
どなたか教えてください。

Aベストアンサー

イデオロギ-というのは確かに色んな解釈をされていますけど、
狭義ではそれぞれの社会階級に独特な政治思想・社会思想を指します。

つまり分かりやすく言えば、人間の行動を決定する根本的な物の考え方の
体系です。一定の考え方で矛盾のないように組織された全体的な理論や思想の事を
イデオロギ-と言うんです。

例えば、人間はみんな千差万別であり色んな考えを持っています。
だから賛成や反対といった意見が出てきますね。
しかし、イデオロギ-というのはみんなが認める事象の事です。
イデオロギ-には賛成・反対といった概念がないのです。

例えば、環境破壊は一般的に「やってはいけない事」という一定の考えに
組織されています。つまりみんなが根本的な共通の考え(やってはいけない事)として組織されているもの、これがイデオロギ-なんです。
しかし、社会的立場によってはその「やってはいけない事」を美化して
公共事業と称して環境破壊をする人達もいますけど。
ここでイデオロギ-という概念に対して色んな論説が出てくるわけです。
一応これは一つの例ですけど。

というかこれくらいしか説明の仕様がないですよ~~・・。
こういう抽象的な事はあまり難しく考えるとそれこそ分からなくなりますよ。
この説明で理解してくれると思いますけどね。

イデオロギ-というのは確かに色んな解釈をされていますけど、
狭義ではそれぞれの社会階級に独特な政治思想・社会思想を指します。

つまり分かりやすく言えば、人間の行動を決定する根本的な物の考え方の
体系です。一定の考え方で矛盾のないように組織された全体的な理論や思想の事を
イデオロギ-と言うんです。

例えば、人間はみんな千差万別であり色んな考えを持っています。
だから賛成や反対といった意見が出てきますね。
しかし、イデオロギ-というのはみんなが認める事象の事です。
イデオ...続きを読む

Q二点の座標から角度を求めるには?

2点の座標A,Bの角度を求めたいのですが,たとえばA点(0,0)とB点(4,3)を結ぶラインは、底辺Bxと高さByを元に三角関数?から30度と求められますが、B点がマイナス座標が絡んできた場合などの90度から359度までをどう求めていいか悩んでいます。また、A点も(0,0)に限定されるわけではないので、ますます混乱しています。どう考えればよいのか教えていただきたいのですが
(水平はX軸プラス方向が0度です)

Aベストアンサー

>2点の座標A,Bの角度を求めたい~・・・・

このままなら答えは0ですけど?

xy座標で、x軸のプラス方向を0度とし、
2点の座標A、Bにより形成される線ABとx軸との角度
ってことですね。

>たとえばA点(0,0)とB点(4,3)を結ぶラインは、底辺Bxと高さByを
>元に三角関数?から30度と求められますが、

sen-senさんの書かれたとおり、これは間違いです。
この場合、Bからx軸へのばした垂線とx軸との交点をCとすると、
三角形ABCができ、そのときの求めたい角度をθとすると、
tanθ=3/4となります。
よって、θ=36.8698...
となります。

>B点がマイナス座標が絡んできた場合などの90度から359度までを
>どう求めていいか悩んでいます。また、A点も(0,0)に限定される
>わけではないので、ますます混乱しています。
>(水平はX軸プラス方向が0度です)

常にx軸のプラス方向が0度でしたら、
1.第一象限にある場合は90度足す。
2.第二象限にある場合はそのまま。
3.第三象限にある場合は270度足す。
4.第四象限にある場合は180度足す。
とすればいいのでは?

簡単な例として、x軸と点A(0,5)と点B(-3,7)によって形成される
線ABとの間の角度は・・・・

まず、図を描いてみると点Bは第一象限にあるので、
最後に求めた角度に90度足せばいいだけです。
さっきと同じように直角三角形を作成します。
すると点Cの座標は(0,7)となります。
辺ABと辺ACとの間の角度は、tanθ=3/2
θ=56.3
以上より、x軸(に水平な線)と線ABとの間の角度は146.3度となります。

こんな感じでいいのでは?

>2点の座標A,Bの角度を求めたい~・・・・

このままなら答えは0ですけど?

xy座標で、x軸のプラス方向を0度とし、
2点の座標A、Bにより形成される線ABとx軸との角度
ってことですね。

>たとえばA点(0,0)とB点(4,3)を結ぶラインは、底辺Bxと高さByを
>元に三角関数?から30度と求められますが、

sen-senさんの書かれたとおり、これは間違いです。
この場合、Bからx軸へのばした垂線とx軸との交点をCとすると、
三角形ABCができ、そのときの求めたい角度をθとすると、
tanθ=3/4...続きを読む

Q2乗しても同値性が崩れないときと崩れるとき

2乗しても同値性が崩れないときともう一つの解が割り込んできて同値性が崩れるときはそれぞれどのような場合なのでしょうか。よく方程式の両辺を2乗してルートをはずしたり、代入しやすくしたりすると思うのですが、問題をやっていて「ここで2乗してもいいのかな?」といつも迷ってしまいます。このようにならないためにはどのようなことに気をつければよいのでしょうか。

例);2乗してもいいとき

X=-1/2(α+β){[(α+β)^2]-1}・・・(1)
Y=3/4[(α+β)^2]+3/4・・・(2)

ここでXとYの関係式を作るために(2)を(α+β)^2=・・・の形にして置いて・・・(2)”、(1)の両辺を2乗して(α+β)^2を作り出しておいてから(2)”を(1)に代入するというものです。

Aベストアンサー

OKじゃ!x実数⇒t実数はよいが、その逆、tが実数→x実数はかならずしも成り立たない。このことに気がつくだけでも良かったのだが、ちゃんと解答を作るとは!

x実数⇔t実数かつ(tは正または0)  
つまり、式の一部を他の文字に置き換えると、同値関係が崩れることがあるということ。解決法は、おきかえた式に戻って検討するだけ。解答はs-wordさんのでOK!

<まとめ>
同値関係が崩れる可能性のあるパターン
1.分母を払うとき
2.等式、不等式の両辺を平方するとき
3.2つの等式、不等式を加減するとき
4.式の一部を他の文字で置き換えるとき

s-wordさんの謎もこれで解決したはず。2乗(平方)したら、同値関係は崩れると思ったほうが良い。代入(加減)も同じ。(もちろん、崩れない場合もある)解決法は、平方の場合は、最初の条件にもどって検討する。代入(加減)の場合は、代入した式に戻って検討する。

ちなみに、7の問題は大変な良問で、いろいろな解法が出来ます。私はパラメ-タaを分離して、解決しました。これは、受験数学のテクニックのひとつで、aとxが伴って変わらくて、しかもaとxを分離することが容易な場合に威力を発揮します。また、xについての二次方程式でもあるので、判別式を利用して解くことも出来るし、さらにs-wordさんの解で、特殊な絶対不等式を使うことも出来る。この絶対不等式は、私は気づきませんでした。問題の型を見た瞬間に、パラメタ分離→微分して調べるという構図が浮かんでしまったからです。某料理会の○皇様が、料理は工夫しすぎるということはない。さらなる工夫をもって精進せいよなどどと言っていたのを思い出しました。まったく数学は奥が深いのう。

OKじゃ!x実数⇒t実数はよいが、その逆、tが実数→x実数はかならずしも成り立たない。このことに気がつくだけでも良かったのだが、ちゃんと解答を作るとは!

x実数⇔t実数かつ(tは正または0)  
つまり、式の一部を他の文字に置き換えると、同値関係が崩れることがあるということ。解決法は、おきかえた式に戻って検討するだけ。解答はs-wordさんのでOK!

<まとめ>
同値関係が崩れる可能性のあるパターン
1.分母を払うとき
2.等式、不等式の両辺を平方するとき
3.2つの等式、不等...続きを読む

Qギリシャ文字の書き方

私はギリシャ文字(特にδ、ζ、ξ)を書くのがとても苦手です。しかしながら、レポートを書くときには多用しますし・・・。レポートを見た教官様が私のへたくそな筆跡を見て嘲笑されるさまが目に浮かびます(泣)

ギリシャ文字を書くときのコツをお教え願いませんでしょうか。
是非よろしくお願いしますm(_ _)m

Aベストアンサー

物理屋の siegmund です.

化学に限らず,理工系ではギリシア文字はよく出てきますね.
例えば,
http://homepage1.nifty.com/suzuri/gg/ggk001.html#111
に書き順が出ています.
ありゃ~,私の書き順は上のページと違っているのがいくつかある(^^;).
まあ,いいや,要はちゃんとわかればいいんだから.

No.1 さんの言われるように,はじめは下手なのは仕方がないでしょう.

> レポートを見た教官様が私のへたくそな筆跡を見て
> 嘲笑されるさまが目に浮かびます(泣)

嘲笑はしないと思いますが....(^^).
大事なのは,はっきりわかるように書くことです.
σとδ,ζとξ,μとν,などがが同じように見えるのでは困ります.
φとψを混同する学生さんも時々います.
あとは,英字との区別,
ρとp,αとa,ηとn,γとr,κとk,
などはっきり区別できるように書くことも大事です.

こういうことはギリシア文字に限らないことで,
uとvが同じように見えるのも困りますよね.

物理屋の siegmund です.

化学に限らず,理工系ではギリシア文字はよく出てきますね.
例えば,
http://homepage1.nifty.com/suzuri/gg/ggk001.html#111
に書き順が出ています.
ありゃ~,私の書き順は上のページと違っているのがいくつかある(^^;).
まあ,いいや,要はちゃんとわかればいいんだから.

No.1 さんの言われるように,はじめは下手なのは仕方がないでしょう.

> レポートを見た教官様が私のへたくそな筆跡を見て
> 嘲笑されるさまが目に浮かびます(泣)

嘲笑はしないと思いま...続きを読む

Q四次元というのはどんな世界ですか?

そもそも我々の住んでいる世界は三次元ですか、四次元ですか?
三次元の世界とは縦横高さのある空間の世界だと思います。
これに時間の概念を足せば四次元になるのでしょうか?
我々の世界にも時間があるので、四次元といってもいいのでしょうか?
それとも四次元とは時間とは無関係の世界なのでしょうか?
あるいは時間と空間を自由に行き来できるのが四次元なのでしょうか?

よろしくお願いします。

Aベストアンサー

>そもそも我々の住んでいる世界は三次元ですか、四次元ですか?

4次元であると考えると都合がいいというのが
現段階の結論です。

 100年ほど前、スイスのチューリッヒ工科大学
のミンコフスキー教授が物理学的な4次元の理論というのを
考えました。物理的な計算をするのに、縦、横、高さ
方向以外にもう1つ方向があるとして計算すると
うまく計算できることがあるというもので、
彼の教え子の一人が、4次元時空の理論と
して有名な相対性理論を完成させた、アルバート・
アインシュタインでした。
 彼は、リーマンという数学者が作った、
曲がった空間の幾何学(現在リーマン
幾何学と呼ばれています)を使い、4次元の
空間が歪むという状態と、重力や光の運動を
あわせて説明したんです。これが相対性理論。

>これに時間の概念を足せば四次元になるのでしょうか?

 物理学的にはそうです。

 相対性理論の話に関連付けて説明するとこんな感じです。
例えば、下敷きの板のような平面的なもの(数学的には
これを2次元空間と言ったりします)を曲げると
いう動作を考えてみて下さい。下敷きに絵が書いて
あったとして、曲げながらそれを真上から見て
いると、絵は歪んで見えます。平面的に見て
いても下敷きという2次元空間が歪んでいる
ことが感じ取れます。
 2次元的(縦と横しかない)な存在である下敷きが
歪むには、それ以外の方向(この場合だと高さ方向
ですが)が必要です。

 19世紀に、電気や磁気の研究をしていた学者たちが、
今は小学校でもやる砂鉄の実験(紙の上に砂鉄をばら撒いて
下から磁石をあてると、砂鉄が模様を描くというやつです)
を電磁石でやっていたときに、これは空間の歪みが
原因ではないかと直感したんです。
 電磁石の強さを変えると、砂鉄の模様が変化します。
これを砂鉄が動いたと考えず、砂鉄が存在して
いる空間の歪みが変化したのでは?と考えたんです。

 3次元の空間がもう1つ別な方向に曲がる。
その方向とは時間という方向だということを
証明したのが、相対性理論だったんです。


>あるいは時間と空間を自由に行き来できるのが四次元なのでしょうか?

 4つ目の方向である時間は、存在していても
その方向に、人間が自由には移動する方法は
現在ありません。時間方向を自由に動ける機械と
いうのは、タイムマシーンのことなんですが。

 日常生活を考えてみたとき、縦、横といった
方向は割りと自由に動けます。1時間ちょっと
歩けば4kmくらい楽に移動できますが、
道路の真中で、ここから高さ方向に
4km移動しろと言われたら、人力だけでは
まず無理でしょう。
 飛行機やロケットといった道具が必要と
なります。
 時間方向というのは、このように存在していても
現在のところ自由に移動できない方向なんです。

 例えば、人間がエレベーターの床のような
平面的な世界に生きているとしましょう。

 この場合、高さ方向を時間と考えて下さい。

 エレベーターは勝手に下降しているんです。
この状態が、人間の運動と関係なく、時間が
経過していく仕組みです。

 人間もほんの少し、ジャンプして高さ
方向の移動に変化をつけることができます。

 同様に時間もほんの少しなら変化をつける
ことができます。

 エレベーターの中で、ジャンプすると
ほんの少し下降を遅らせることができる
ように、時間もほんの少し遅らせることは
できるんです。




 

>そもそも我々の住んでいる世界は三次元ですか、四次元ですか?

4次元であると考えると都合がいいというのが
現段階の結論です。

 100年ほど前、スイスのチューリッヒ工科大学
のミンコフスキー教授が物理学的な4次元の理論というのを
考えました。物理的な計算をするのに、縦、横、高さ
方向以外にもう1つ方向があるとして計算すると
うまく計算できることがあるというもので、
彼の教え子の一人が、4次元時空の理論と
して有名な相対性理論を完成させた、アルバート・
アインシュタイン...続きを読む


人気Q&Aランキング