AM波復調回路として、包絡線検波回路を挙げることができる。ダイオードにAM波が加わるとダイオードの整流作用によってAM波の正または負の部分が取り出されコンデンサCが充電されるが、変調を受けた搬送波がなくなると抵抗Rを介してコンデンサは放電し、この充放電を繰り返すことによって信号波にほぼ等しい包絡線を得ることができる。この後、コンデンサCoによって直流分を阻止すれば、変調波(信号)を復調することができる。
と、教科書にありました。
図は、http://ja.wikipedia.org/wiki/%E5%8C%85%E7%B5%A1% …に載っているのと同じで、あとは、コンデンサCoと信号を取り出すときの抵抗がつくだけです。
AMはの正または負の部分が取り出されるんじゃなくて、正の部分しか取り出せないんではないでしょうか?
また、なんで、最初にコンデンサCに充電されるだけで、抵抗には電流は流れないんでしょうか?
変調を受けた搬送波がなくなる、とはどういうことなんでしょうか?
搬送波成分はあるのになくなるという意味が分りません。
また、なんで、搬送波がなくなる??と抵抗Rを介して放電されるんでしょうか?
さらに、なんで、充放電を繰り返すことによって信号波にほぼ等しい包絡線を得ることができるんでしょうか?
かなり詳しく、そしてかなり分りやすい解説をお願いします。
No.4ベストアンサー
- 回答日時:
その教科書はあまり良いものではないですね。
あなたが疑問に思うのはもっともです。
信号の正/負に関しては他の回答者の言うとおりです。
ダイオードの向きを逆にすれば負の部分を取り出せます。
コンデンサの電圧がゼロでない限り抵抗に電流は流れます。
「搬送波がなくなる」という説明は不適切です。
搬送波の振幅がゼロになる部分をなくなると言っているのだと思いますが、
普通はそれをなくなるとは言いません。その教科書のローカルルールでしょう。
実は包絡線検波の理論的な説明は結構難しいのです。下記を参照してください。
http://asaseno.cool.ne.jp/germanium/index.html
簡単に説明すると次のようになります。
搬送波が増加している時にはコンデンサが充電されてコンデンサの電圧が搬送波の電圧に等しくなります。
(ダイオードの順方向電圧をゼロとみなす、また、信号源のインピーダンスは十分低いものとする)
搬送波がピークを過ぎて下がり始めるとダイオードが逆バイアスになり、抵抗を介して放電するためにコンデンサの電圧は徐々に減少します。
次のサイクルで搬送波が増加してコンデンサの電圧を超えるとコンデンサが充電され、コンデンサの電圧は搬送波に追従します。
このよう搬送波の1サイクルごとにコンデンサは充電と放電を繰り返します。
充電している時はダイオードから流れ込む電流と抵抗で放電される電流の差分だけ充電されます。
通常、搬送波の周波数は高いため放電時間が短く、下がる電圧はわずかで、検波された波形は搬送波のピーク電圧を線で結んだ波形に近いものになります。
ただし、抵抗による放電電圧の変化が変調波による変化よりゆっくりになると変調波を再現できなくなります。
これをダイアゴナルクリッピングまたはダイアゴナル歪みと言います。
No.3
- 回答日時:
抵抗に電流は流れますよ。
ただ、コンデンサが充電していない場合が電流はすべてコンデンサに流れ込みますから抵抗には流れないです。
具体的にはこの抵抗に流れる電流はコンデンサの両端の電圧によって決まります。だから
>変調を受けた搬送波がなくなると抵抗Rを介してコンデンサは放電し
の部分は厳密に言うと正しくないです。
No.2
- 回答日時:
検波回路のダイオードは、一方向にしか電流を流しませんから、図の回路では、正の向きの電流しか包絡線検波に寄与しません。
ですがもし、ここで、ダイオードの向き(極性)を逆にした場合、負の部分しか取り出せませんが、検波回路として何等問題なく動作します。「正または負の部分が取り出され」とはそういう意味です。コンデンサCと抵抗Rが並列の回路では、Cが満充電状態にない場合、Cのインピーダンスはゼロであり、電流はRには流れずにCを充電します。
変調を受けた電波は、その「周波数」の電波はほとんど消失しますが、その「エネルギー」が復調波に転換するのであって、消えて無くなるのではありません。包絡線検波回路は、平均値検波回路に比べて、搬送波のエネルギーを有効に使える特長があります。
コンデンサに蓄えられた電気エネルギーはCとRの積で決まる時定数に従って放電しますが、その放電電流の向きは、ダイオード側は逆バイアスなので阻止され、抵抗側に流れます。
平均値検波回路は、搬送波のエネルギーを捨ててしまうので効率が悪く、それを解決するものが包絡線検波回路ですね。搬送波周期Tcのとき、Tc<<CRで搬送波の包絡線によくフィットした復調波が得られることが知られております。
この回路の動作原理は「原因が結果を生み、その結果が原因を生む」と例えられているようです。
搬送波周波数fcの逆数Tcは極めて短い時間であり、Tc<<CRを満たす場合、Cが放電終了するより十分前に次の充電が始まり、Cの端子電圧が搬送波の電圧変化に比べて極めて小さく抑制され、搬送波の痕跡としてのわずかのリプルはあるものの比較的滑らかな復調波が得られます。CR時定数が十分大きくない場合、充放電時の出力電圧の変化が激しくなり、出力復調波はリプルが大きくなってギザギザになります。
この回答への補足
変調を受けた搬送波がなくなると抵抗Rを介してコンデンサは放電し、この充放電を繰り返す
と言う部分がいまいち理解できません。
なんで、搬送波がなくなる(図では、搬送波成分はあるのになんでなくなっていることになっているのか?)ことによって抵抗に放電されるんですか?
搬送波がなくなるという原因によって抵抗に放電されるということになる理由が分りません。
搬送波がなくなる=抵抗に放電
ということでしょうか?
しかし、図では、搬送波成分はありますよね?
No.1
- 回答日時:
>AMはの正または負の部分が取り出されるんじゃなくて、正の部分しか取り出せないんではないでしょうか?
この回路図では、ダイオードが一つなので正の信号しか取り出せません。4つのダイオードをブリッジにすれば、正負の両方が取り出せます。
詳しくは、以下のキーワードで調べてください。
抑圧搬送波単側波帯 (SSB; Single Sideband)
抑圧搬送波両側波帯 (DSB; Double Sideband)
>また、なんで、最初にコンデンサCに充電されるだけで、抵抗には電流は流れないんでしょうか?
コンデンサのほうが、高周波に対しては、インピーダンスが小さいからです。無視できるくらいの小さな電流は流れていると思いますが。
>変調を受けた搬送波がなくなる、とはどういうことなんでしょうか?
図の波形を見てのとおりです。搬送波は、正負の高周波の波形ですが、包絡線検波により信号(低周波)しか、出力されないですよね。
ちょっと乱暴な言い方かもしれませんが、フィルターを通して、搬送波がカットされたという感じです。
出力は、信号だけとなり、搬送波はなくなります。
>また、なんで、搬送波がなくなる??と抵抗Rを介して放電されるんでしょうか?
搬送波が正の期間、コンデンサにピークまで充電されます。ピークから今度は下がっていき、府の機関を目指しますが、このとき、コンデンサは、放電が開始されるのですが、ダイオードは逆向きになっているので、そっちには電流は流れず、抵抗のほうに放電していきます。このとき、抵抗を適当な大きさにして、時定数を大きくしておくと、ゆっくりと放電されるので、ピークのときの値よりあまり変わらない値をキープします。つまり、放電がゆっくりなので、その間に、搬送波が負まで行って、また次のピークまで戻ってきてしまうのです。なので、包絡線は、ピークをかたどったような形になるのです。
このとき、高周波(搬送波)がなくなっています。
最後にもう一言付け加えると、正のときは、ダイオードは順方向なので、抵抗値は小さいですね。出力にある抵抗はそこそこ大きいものとします。
すると、このときの時定数は小さくなりますので、搬送波のピークまで高速で充電されます。
しかし、ピークより下がって、放電がされるようになると、ダイオードは逆方向で、電流は流れず、出力抵抗は、そこそこ大きいので、時定数がおおきくなり、ゆっくり放電となります。だから、出力は包絡線が検波されるのです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
見学に行くとしたら【天国】と【地獄】どっち?
みなさんは、一度だけ見学に行けるとしたら【天国】と【地獄】どちらに行きたいですか? 理由も聞きたいです。
-
ちょっと先の未来クイズ第6問
2025年1月2日と1月3日に行われる、第101回箱根駅伝(東京箱根間往復大学駅伝競走)で、上位3位に入賞するチームはどこでしょう?
-
最強の防寒、あったか術を教えてください!
とっても寒がりなのですが、冬に皆さんがされている最強の防寒、あったか術が知りたいです!
-
洋服何着持ってますか?
洋服を減らそうと思っているのですが、何着くらいが相場なのかわかりません。
-
「これいらなくない?」という慣習、教えてください
現代になって省略されてきたとはいえ、必要性のない慣習や風習、ありませんか?
-
ダイオード検波回路のRとCの求め方
その他(自然科学)
-
変調率の求め方が
その他(教育・科学・学問)
-
AM変調回路について。
物理学
-
-
4
バイポーラとユニポーラの入力信号による選択
その他(教育・科学・学問)
-
5
回路
物理学
-
6
検波回路についてです。 電子回路の勉強をしています。 基本的な電気の仕組みがよくわかっていないんで
工学
-
7
銅損試験と鉄損試験
その他(教育・科学・学問)
-
8
包絡線復調回路(ダイオード検波器)
その他(教育・科学・学問)
-
9
ダイオード検波
その他(教育・科学・学問)
-
10
ベース変調方式におけるLC共振
その他(自然科学)
-
11
AM変調における過変調について
物理学
-
12
定K型と誘導m型のローパスフィルタについて教えて下さい。
その他(自然科学)
-
13
ベース変調
その他(自然科学)
-
14
このダイオード出力に繋がっている抵抗の役割を教えてください
工学
-
15
導波管内で発生した定在波の管内波長の測定で、実際測った値と、計算から出した値で誤差が出る原因はどの様
工学
-
16
オペアンプ/反転増幅器/頭打ち
物理学
-
17
誘導M型フィルタについて教えてください。
その他(自然科学)
-
18
LC発振回路の発振周波数が理論値と実験値で合わない!!
物理学
-
19
包絡線検波回路
物理学
-
20
反転増幅回路の入出力電圧の関係
物理学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【選手権お題その3】この画像で一言【大喜利】
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・ちょっと先の未来クイズ第6問
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
コンデンサでLED豆電球が光...
-
コンデンサの容量
-
コンデンサーを充電しているの...
-
RC回路の過渡現象について
-
コンデンサに直流を流し続けた...
-
整流回路(平滑化とリップル率)
-
AM波の復調回路について
-
時定数について
-
コンデンサの過渡現象について...
-
これってこれの(2)で1/2CV^2の...
-
なぜコンデンサーの静電エネル...
-
コンデンサが充分溜まった状態...
-
電気回路の中性線とアースについて
-
電線の布設:条って何でしょうか。
-
三相交流のS相接地が分かりません
-
3相4線式電源の中性線に設備の...
-
AC電源(L,N.E)の特性
-
絶縁トランス二次側機器の接地...
-
接地面、設置面の使い方
-
発電機の端子について
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
AM波の復調回路について
-
コンデンサでLED豆電球が光...
-
コンデンサの容量
-
コンデンサーを充電しているの...
-
コンデンサが充分溜まった状態...
-
コッククロフト回路の各コンデ...
-
時定数について
-
pn接合ダイオードの拡散容量・・・
-
整流回路(平滑化とリップル率)
-
コンデンサを過充電させない方法
-
高校物理のコンデンサーで質問...
-
コンデンサの電圧について教え...
-
これってこれの(2)で1/2CV^2の...
-
徐々に電圧を上げたり下げたり...
-
コンデンサに直流を流し続けた...
-
なぜコンデンサーの静電エネル...
-
コンデンサの過渡現象について...
-
RC回路の過渡現象について
-
コンデンサーの合成容量を用い...
-
ICスイッチ
おすすめ情報