ここから質問投稿すると、最大4000ポイント当たる!!!! >>

n√c(定数cのn乗根)  ・・・☆ はn→∞で1に収束しますか?
また、その導き方も教えてください。

√の中に(aのn乗+bのn乗)が入った関数の極限(n→∞)を求める問題を解いていて、
主要項√(aのn乗)(a>bの場合)で括ったのはいいんですが、☆がどうなるのか分からず困っています。
分かりにくい文で申し訳ありませんが、数学の得意な方、よろしくお願いしますm(__)m

このQ&Aに関連する最新のQ&A

A 回答 (2件)

こんばんわ。



「n乗根」「n√」と表しているとわかりにくかもしれませんね。
これを「1/n乗」ととらえられれば、見やすく分かりやすくなると思います。

lim[n→∞] n√c
= lim[n→∞] c^(1/n)
= lim[t→0] c^t (t= 1/nとおいて)
= 1

あと、定数:cについては「正の数」という条件もお忘れなく。
    • good
    • 1
この回答へのお礼

早速のご回答ありがとうございます!
説明も非常に分かりやすく理解できてすっきりしました。
来年受験なんで頑張ります(*^o^*)
ありがとうございましたm(__*)m

お礼日時:2011/02/12 20:27

ん?


0<b<a より 1<1+((b/a)のn乗)<2 の
各辺のn乗根をとってから n→∞ とする
という流れは大丈夫なんだよね?
    • good
    • 3

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qlim[n→∞](1-1/n)^n=1/e について

こんにちは

lim[n→∞](1+1/n)^n=e
が成り立つことは簡単に示せるのですが、
lim[n→∞](1-1/n)^n=1/e
となることの証明はどのようにすればいいのでしょうか?
ご存知の方がいらっしゃいましたらご回答よろしくお願いします。

Aベストアンサー

e=lim(1+t)^(1/t)   〔t→0〕
がeの定義なので、(t→+0でもt→-0でもOK)
-1/n=tとおきます。

n→∞のとき、t→-0なので、
(与式)=lim(1+t)^(-1/t)   〔t→-0〕

これを変形すると、
=lim{(1+t)^(1/t)}^-1   〔t→-0〕
=e^-1
=1/e

高校の範囲なら、この証明で大丈夫です。

Qn乗の関数の極限関数

n乗の関数の極限関数ってどうに求めればいいんですか?

1/(1+x^2)^nみたいな式の極限関数を求めたいわけなんですが。

Aベストアンサー

 g(x)=1/(1+x^2), f(x)={g(x)}^n とすると g(x) はどのような値をとるでしょうか。
 f(x)はg(x)をn乗したものですので、g(x)=1, 0<g(x)<1 で場合分けすると f(x)の極限関数が分かると思います。
 極限関数は x=0,x≠0で異なる一定値をとる関数になると思います。



>n乗の関数の極限関数ってどうに求めればいいんですか?

 n乗する前の関数をg(x)とおくと、|g(x)|>1(発散), g(x)=1(収束), g(x)=-1(振動)、|g(x)|<1(収束) で場合分けすると良いと思います。

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q階乗と極限

極限値の問題です。
n--> ∞のとき

nの2乗 / n! が 0に収束する

すなわち lim(n-->∞)2^n / n! = 0

を証明したいのですが、いい方法が思い浮かびません。

どのように証明したらよいでしょうか?

アドバイスお願いします。

Aベストアンサー

>nの2乗 / n!
(2のn乗)/(n!)ですか?ならば
0<(2^n)/n!
=(2/1)*(2/2)*(2/3)*(2/4)*…(2/n)
<(2/1)*(2/2)*(2/3)*(2/3)*…(2/3)
=2*(2/3)^(n-2)
→0(n→∞)
となるのではさみうちの原理から与式=0です。

Qxのx乗の微分は?

ある問題を解いていると、途中の計算でxのx乗の微分を求めなければならなくなったのですが、xのx乗を微分するとどうなるのか完全に忘れてしまいました。どなたか分かる方いませんか?

Aベストアンサー

y=x^x ・・・(1)

両辺対数をとると

log y =xlogx ・・・(2)

微分すると

(1/y)y'=logx+1 ・・・(3)

y'=(logx+1)y ・・・(4)

y'=(logx+1)x^x ・・・(5)

(5)式の形だと思います。

Q逆三角関数の方程式

たとえば、Arccos1/√5=ArcTanxといった問題の場合、
y=Arccos1/√5などと置き、cosyやtanyを表しますよね。

今困っている問題は、
Arccosx=Arcsin1/3+Arcsin17/9といったような
加法が用いられた場合に、
何をどのように置き換えたらいいのかがわかりません。
どなたか教えてください。

Aベストアンサー

y=sinθ----(1)の逆関数がθ=Arcsin y ----(2)です。yの値は-1から1になります。
ですので、Arcsin17/9というのはあり得ません。
ここからはタイプミスだったとして話を進めます。
(2)式よりArcsin1/3は角度を指定している式ということがわかりますよね。
Arcsin1/3=θ1----(3)
Arcsin17/9?=θ2----(4)とする。
θ3=θ1+θ2----(5)とすると
Arccosx=θ3
x=cosθ3

θ3の値が具体的に必要な場合は式(3)から(5)から求めてください。

Q極限値lim[n→∞](3^n/(2^n+n^2))とlim[n→∞](2^n+3^n)^(1/n)の求め方は?

(1)lim[n→∞](3^n/(2^n+n^2))
(2)lim[n→∞](2^n+3^n)^(1/n)

の極限値がわかりません。
(1)は3^nで分母・分子を割って
lim[n→∞](3^n/(2^n+n^2))
=
lim[n→∞][1/{(2/3)^n+n^2/3^n}]
までいけたのですがn^2/3^nが収束するのか発散するのか分かりません。
どうなるのでしょうか?

あと、(2)は対数を取って
lim[n→∞]log(2^n+3^n)^(1/n)
=
lim[n→∞](1/n)log(2^n+3^n)
までいけたのですがここから先へ進めません。

Aベストアンサー

YYoshikawaさん、こんにちは。

[(1)について]

> n^2/3^nが収束するのか発散するのか分かりません。

まず感覚として、ANo.1さんも書かれているように、n=100で考えてみると、
 n^2/3^n = 10000/3^100
ですが、3^2=9 が大体10ですから、3^100 は、10^50 ぐらいなわけで、0が50個ぐらいつきますから、10000などよりは、はるかに大きくなります。つまり n^2/3^n → 0 が予想できます。

数式では次のように証明できます。

まず、n^2/3^n はnが大きいとき単調減少です。
実際、a(n)=n^2/3^n とおき、

 a(n+1)/a(n) = [(n+1)^2/3^(n+1)]/[n^2/3^n]

と比をとってみると、

 a(n+1)/a(n) = [1+(1/n)]^2/3 = [1 + 2/n + 1/n^2]/3 … (3)

ですが、nが大きいときには、2/n < 1, 1/n^2 < 1 なので、(3)は、

 a(n+1)/a(n) < 1

となり、単調に減少することがわかります。
まずこの時点で発散はしないことがわかります。
また、a(n) > 0 なので、lim_{n→∞} a(n) ≧ 0 となります。

もし、a(n) の収束値bが、正の有限値なら、n→∞で、
 a(2n)/a(n) → b/b = 1
になるはずですが、
 a(2n)/a(n) = [(2n)^2/3^{2n}]/[n^2/3^n] = 4/3^n → 0
になるので、収束値bは正の有限値にはなりません。

従って、
 lim_{n→∞} a(n) = 0 … (4)
が得られます。

[(4)の別証]
(3)式 a(n+1)/a(n) = [1+(1/n)]^2/3 = [1 + 2/n + 1/n^2]/3 より、
n>10で、
 a(n+1)/a(n) < [1 + 2/10 + 1/100]/3 < 2/3
故に、n→∞ のとき、
 0 < a(n) = [a(n)/a(n-1)]・[a(n-1)/a(n-2)] ・…・ [a(12)/a(11)]・a(11)
      < (2/3)^{n-11}× a(11) = (2/3)^n × (3/2)^{11}a(11) → 0
故に
 lim_{n→∞} a(n) = 0
が得られる。
(別証終わり)


[(2)について]

まず感覚的なことを説明しますと、nが大きいとき、2^nは3^nに比べてはるかに小さくなるので、基本的に、lim[n→∞](2^n+3^n)^(1/n)の、2^n+3^nの部分は3^nに近づくことがわかり、問題の式は(3^n)^{1/n}=3 になることが予想されます。

これを式で言うには、対数をとるより、

 lim_{n→∞} [3^n×{1+(2/3)^n}]^{1/n}
 = lim_{n→∞} 3×[1+(2/3)^n]^{1/n} … (5)

と変形するのが良いでしょう。(2/3)^n → 0 なので、
 [1+(2/3)^n]^{1/n} → 1 … (6)
なので、
 (5) = 3
になります。


なお、(6)が明らかと思われない場合は、
 1 = 1^{1/n} < [1+(2/3)^n]^{1/n} < 1+(2/3)^n → 1
(∵ a > 1 に対して、a^{1/n} = (a^{1/n})^n = a )
より、[1+(2/3)^n]^{1/n} → 1
と証明します。

YYoshikawaさん、こんにちは。

[(1)について]

> n^2/3^nが収束するのか発散するのか分かりません。

まず感覚として、ANo.1さんも書かれているように、n=100で考えてみると、
 n^2/3^n = 10000/3^100
ですが、3^2=9 が大体10ですから、3^100 は、10^50 ぐらいなわけで、0が50個ぐらいつきますから、10000などよりは、はるかに大きくなります。つまり n^2/3^n → 0 が予想できます。

数式では次のように証明できます。

まず、n^2/3^n はnが大きいとき単調減少です。
実際、a(n)=n^2/3^n とおき、...続きを読む

Q0の積分

0の積分

0を積分すると0になるんですか?それとも、定数のCで表すんですか?

Aベストアンサー

こんにちは。
不定積分ならばC、定積分ならばゼロです。

f(x)= 0 の原始関数Fは、 F(x)= C

したがって、
不定積分ならば
∫0dx = F(x)= C
  (xが何でも、F(x)= C )

定積分ならば
∫[x=a⇒b]0dx = F(b) - F(a)
 = C - C
 = 0

QTOEFL ITPのスコアについて教えてください。

こんにちは。
大学でTOEFLのテストを受けました。
結果は443?点でした。
ですがこのスコアはどの程度のものなのでしょうか?
というのも、こんな成績で恥ずかしながら運良く入試がよく解けて大学の特待生として入学したので、傑出していなければ落とされてしまうのではと不安でたまりません。
偏差値60前後の大学なのですが、その新入生としてはやはり悪い数字でしょうか?
実際に、500点が留学の基準と言われていますよね?
それには少なくても満たないし…。
入試が終わってから一ヶ月サボったつけが回ってきたと後悔しています。
回答よろしくお願いします。

Aベストアンサー

ITPの場合は、満点が677点。でCBTやibtとの換算表においては、PBTとまったく同じ点数となります。
http://www.ncc-g.com/page33.html
443点ということは、cbtで127、ibt43と同じということですが、ibt43が高校卒業と同じぐらいのレベルですから、大学1年生としては妥当なスコアだと思います。これから努力すればスコアは上げられますよ。
http://eq-g.com/article/exam/exam-hikaku/

Q集積点が、まったく分かりません!!

集積点の意味がまったくわかりません。詳しく教えてください。

Aベストアンサー

MANIFESTさんがどのくらいの予備知識をお持ちなのかわからないので
答えにくいのですが、
集積点について質問されると言うことは少なくとも位相空間についての基本的な
用語くらいはご存知だと仮定して説明します。
距離空間はご存知でしょうね。

Xをある位相空間、AをXのある部分集合とします。
x∈XがAの集積点であるとは
xの任意の近傍とAの共通部分にx以外のAの点が少なくとも1つは含まれる
ような点のことです。
Xが距離空間なら、これは
「任意のεに対してxからの距離がε以下であるようなx以外のAの要素が存在するような点」
と言い替えられます。

直観的な言い方をすれば、x∈XがAの集積点であるとは
「xのどんな近くにも(x以外の)Aの点がある」
と言う条件をみたすような点のことです。

ついでに集積点との対比で孤立点も覚えてしまいましょう。
集積点とはある意味で対照的なものが孤立点です。
すなわちx∈XがAの孤立点であるとは
xがAの要素であり  …(S1)
かつxのある近傍とAの共通部分にx以外のAの点が含まれない。…(S2)
ような点のことです。
Xが距離空間なら、これは
「あるεに対してxからの距離がε以下であるようなAの要素はxだけであるような点」
となります。

注意していただきたいのはx∈AであることはxがAの集積点であるためには
必要でも十分でもないということです。
xがAの点であってもそれが孤立点ならxは集積点ではないし、Aの点でないような
Aの集積点も存在します。
しかし孤立点と言う概念は集合Aの要素に対して与えられる概念ですから、Aに
属さない点が(S2)の条件だけ満たしてもそれをAの孤立点とは呼びません。

あとは距離空間(ユークリッド空間)での簡単な例を挙げておきますのでイメージをつかんで下さい

例(1)Xを2次元ユークリッド空間として
A={(x,y)∈X| x^2 + y^2 < 1} ∪ (2.0)
とします。つまりAは原点中心半径1の開円盤と点(2,0)の和集合です。
するとAの集積点(の集合)は
{(x,y)∈X| x^2 + y^2 ≦ 1}
すなわち原点中心半径1の開円盤とその境界となります。
点(2,0)は孤立点なので集積点ではありません。

例(2)Xを2次元ユークリッド空間として
A={(x,y)∈X| y = sin(1/x) ,x∈(0,∞) }
とします。Aの集積点(の集合)はA自身と集合
B={(0,y)∈X| y∈[-1,1] }
の和集合です。

例(3)Xを1次元ユークリッド空間として
A= { 1/n | n=1,2,…}
とします。原点{0}はAの集積点です。しかしA自身の点はすべて孤立点です。

例(4)Xを1次元ユークリッド空間として
Aは開区間(0,1)の有理点。すなわち
A= { x∈(0,1)|xは有理数 }
とします。Aの集積点(の集合)は閉区間[0,1]です。

MANIFESTさんがどのくらいの予備知識をお持ちなのかわからないので
答えにくいのですが、
集積点について質問されると言うことは少なくとも位相空間についての基本的な
用語くらいはご存知だと仮定して説明します。
距離空間はご存知でしょうね。

Xをある位相空間、AをXのある部分集合とします。
x∈XがAの集積点であるとは
xの任意の近傍とAの共通部分にx以外のAの点が少なくとも1つは含まれる
ような点のことです。
Xが距離空間なら、これは
「任意のεに対してxからの距離がε以下であるよう...続きを読む


人気Q&Aランキング