オイラーが証明した「すべての自然数の和は-1/12である(1+2+3+・・・=-1/12)」は
定義域を間違えた誤謬だとこれまで思ったのですが、
「素数からゼータへ、そしてカオスへ」(小山信也)を読むと第9章で
ζ(s)の解析接続にs=-1を代入した値でこれが成立して、整数論的には「すべての自然数の和が
有限値を取る」のが非常に深淵な結果でありニュアンスがあってゼータ関数論では常識である
ようなことが書かれてましたが意味がよくわかりませんでした。
やっぱりこの式は重要なんでしょうか???
No.2ベストアンサー
- 回答日時:
なんだかこのような質問が多くなってきてる気がしますが・・・
式だけ一人歩きしてしまって肝心な中身が置き去りになってしまってる。最初は興味深々だが本筋に行くに従って離れていきやがて忘れるという人がほとんどだということに専門家は気づくべきだと思いますね。
解析数論の一部の人とか特に数学に人を寄せ付けようと過剰に好奇心を煽るような記述に関してもっと気をつけるべきですね。
で、前置きはこのくらいにしまして、この等式についてですがNo1さんも回答されてるように「解析接続」を思い浮かべてるのであればとても重要な意味のあるものです。この式を単なる和の公式みたいに考えてるのであれば全く意味のないものです。「見方次第」というのが最もベストな回答でしょう。
蛇足ながらこのような等式にあまりこだわらないほうが良いと思いますよ。
というのも例えば「1-1/2+1/3-1/4+・・・=0(条件収束する交代級数というものがありそれは順番を入れ替えればどんな値にも収束させることが出来るという事実が背後にありそれは解析学において常識である)」って言ってるのとほとんど変わらないシロモノですから。重要なのはこの式ではなくて背後にある考え方。数学の基礎をしっかりと学ぶきっかけとなってくれれば的なニュアンスで専門家はこのような話をよくしているのだと思います。
回答ありがとうございます。
複素解析は留数定理あたりまで勉強したのですが、その先の数論で
くだんのオイラーの式がいろいろと意味を持ってくるのかと思いましたが
そうでもないんですね。ちょっとゼータ関数を解析接続して使いよくしました
という感じなんですね。
1-1/2+1/3-1/4+・・・=0の例えはわかりやすかったです。
No.1
- 回答日時:
オイラーは、証明したのではなく、主張したのです。
まだ、収束性とか極限とかの概念が
確立していない時代でしたから。
ζ(-1) = -1/12 であることは、事実だし、
それなりの意味があると思いますが、
ζ(-1) = 1 + 2 + 3 + 4 + …
と書くのは、単なる間違いです。
1 + 2 + 3 + 4 + … は、収束しませんから。
s = -1 を代入する前に解析接続しているんだ
と言いたいなら、見てそれと判る記法が必要です。
1 + 2 + 3 + 4 + … という式には、
ζ(s) どころか、s の字さえ登場しません。
この式を見れば、発散する以外の解釈は
ありえないです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 どっちと思いますか 4 2022/10/10 11:16
- 統計学 加重最小二乗法=①「変数を自然対数変換」=②「誤差項の分散の逆数を重み付け」? 8 2022/11/26 11:15
- 数学 1-1+1-1+…=sqrt(2)って証明できるの?(解析接続)(グランディ級数) 解析接続はほぼ入 3 2023/06/08 12:35
- 数学 すべての自然数とすべての実数を1対1で対応させる(すべての実数を一列に並べる)方法について 3 2023/05/26 17:14
- 数学 質問の意味がわかる方だけに回答をお願いします。 1 2023/07/19 12:19
- 哲学 説得力を修辞の巧みさまたは論理の強さの2つに分析するにはどうすると良いでしょうか? 0 2022/07/20 05:46
- 数学 回答の意味について 3 2023/07/06 14:14
- 数学 実数同士の全単射写像について 2 2023/07/05 17:12
- 数学 回答の意味について 4 2023/07/11 11:19
- 数学 複素関数と実関数のテーラー展開の違いについて 1 2022/08/09 06:18
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
∞/0って不定形ですか?∞ですか...
-
シグマの問題なのですが。
-
数学の問題です
-
ラプラス変換後のsの意味って何...
-
数列の極限について
-
ニュートン法で解が収束しない
-
収束か発散かを示したいです。
-
数3の極限です。 0/1の極限は∞...
-
極限の問題
-
無限大の0乗は、1で正しいですか?
-
級数Σa_n が絶対収束すれば、・...
-
無限級数Σ(n=1~∞)(n/n^2+1)の...
-
”有界閉区間”という言葉
-
1/n^2と1/n^3の無限和の問題を...
-
収束
-
limの問題
-
ノルムでは収束するが、各点で...
-
次の条件を満たす数列{an}の...
-
定数aのn乗根の極限(n→∞)...
-
信用創造の計算方法の仕方について
おすすめ情報