プロが教えるわが家の防犯対策術!

dy/dx=-2xy^2
y(0)=1

でx=1での値の近似値をオイラーの方法で、求めよ(n=10)

という問題ですが、ウェブでオイラーの方法についてあらかた調べたのですが、記述が複雑うまく理解できませんでした。まず増やしていく幅のhは自由に設定していいのでしょうか?

オイラーの方法による解き方をやさしく教えていただけたら嬉しいです。

よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

1階の常微分方程式


dy/dx = f(x, y)
の解
y = y(x)
に対して,初期条件
y0 = y(x0)
が与えられているなら,十分小さいhに対して,
y(x0 + h) ≒ y(x0) + y'(x0) h = y0 + f(x0, y0) h
が成り立ちます(1次近似).

# この1次近似がオイラー法の根本的な原理であり,これが解らなければ,オイラー法が解っていないというよりも,微分という考え方がまだ理解できていないと思われますので,もしそうなら,1次近似について復習してください.

そこで,
x1 = x0 + h
と置くと,
y(x1) ≒ y0 + f(x0, y0) h = y1
と表せます.

この式で求められるy1は飽くまで近似値なので,真の解のグラフが点(x1, y1)を通るとは限らないのですが,当たらずとも遠からずってとこでしょうから,点(x1, y1)が真の解のグラフ上にあるものとみなし,この点で同じ近似を行います:
y(x2) ≒ y(x1) + y'(x1) h = y1 + f(x1, y1) h = y2

同じようにして,逐次近似を行っていくと,一連の近似値が得られます:
y1 = y0 + f(x0, y0) h,
y2 = y1 + f(x1, y1) h,
y3 = y2 + f(x2, y2) h,
y4 = y3 + f(x3, y3) h,
...

そこで,xにおける解の値y(x)の近似値が欲しければ,区間[x0, x]をn等分し(本当は等分でなくてもいいのですが,簡単のためそうします),それぞれの分点に
x0, x1, x2, ..., x[n-1], xn = x
と名前を付けると,
y1 = y0 + f(x0, y0) h,
y2 = y1 + f(x1, y1) h,
...
y[n-1] = y[n-2] + f(x[n-2], y[n-2]) h,
yn = y[n-1] + f(x[n-1], y[n-1]) h.

これがオイラー法です.

このやり方は素朴で分かりやすいのですが,誤差が蓄積しますので,精度はあまり良くありません.

で,今回の微分方程式
dy/dx = -2x y^2,
y(0) = 1
ですが,VBSで簡単なコードを書いてみました:


'Euler法

Option explicit

Function f(x, y)
f = -2*x*y^2
End Function

Dim x, xn, y, h
Dim n, i

'初期条件
x = 0
y = 1

xn = 1 '評価点

n = 10 '分割数
h = (xn - x)/n '幅

For i = 1 To n
y = y + h*f(x, y)
x = x + h
Next

MsgBox "y(" & xn & ") = " & y


これをメモ帳でも何でもいいからテキストエディタで拡張子.vbsのテキトーなファイル名で保存し,アイコンをダブルクリックすると,

y(1) = 0.503641976039014

とか値が出力されます.

この微分方程式は,ANo.2さんが回答してくださっているように解析的に解けるのですが(変数分離形),真の解は
y(1) = 0.5
なので,確かに「当たらずとも遠からず」って感じです.
    • good
    • 0

dy/dx=-2xy^2


∫y^{-2}dy=∫-2xdx
-y^{-1}=-x^2+c
-1=c
-y^{-1}=-x^2-1
y=1/(x^2+1)
y(1)=1/2
    • good
    • 0

問題の最後にある「(n=10)」の n って何?

    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q線形・非線形って何ですか?

既に同じようなテーマで質問が出ておりますが、
再度お聞きしたく質問します。

※既に出ている質問
『質問:線形、非線型ってどういう意味ですか?』
http://oshiete1.goo.ne.jp/kotaeru.php3?q=285400
結局これを読んでもいまいちピンと来なかった...(--;


1.線形と非線形について教えてください。
2.何の為にそのような考え方(分け方)をするのか教えてください。


勝手なお願いですが、以下の点に留意いただけると大変うれしいです。
何せ数学はそんなに得意ではない人間+歳なので...(~~;

・わかりやすく教えてください。(小学生に説明するつもりぐらいだとありがたいです)
・例をあげてください。(こちらも小学生でもわかるような例をいただけると助かります)
・数式はなるべく少なくしてください。

『そんな条件じゃ説明できないよー』という方もいると思いますが、どうぞよろしくお願いいたしますm(__)m

Aベストアンサー

昨日「線形の方がなんとなくてわかりやすくないですか」と書いたんですが、やっぱり理系の人間らしく、もうちょっときちんと説明してみます。昨日は数式をなるべく出さないように説明しようとがんばったんですが、今日は少しだけ出しますが、勘弁してください。m(__)m(あと、長文も勘弁してください)


数学的にはちょっとここまで言えるかわかりませんが、自然界の法則としては、「線形」が重要な意味を持つのは、xの値が変化するにつれて変化するyがあったときに、

(yの増加量)/(xの増加量)=A(一定)

という規則が成り立つからです。

xやyの例としては昨日の例で言う例1だとxがガムの個数、yが全体の金額、例2だとxが時間、yが走った距離です。

この規則が何で役に立つかというと、式をちょっと変形すると、

(yの増加量)=A×(xの増加量)・・(1)

ということがわかります。つまり、Aの値さえわかれば、xが増えたときのyの値が容易に推測できるようになるわけです。


ここで「Aの値さえわかれば」と書いていますが、この意味を今から説明します。

自然界の法則を調べるためには何らかの実験を行います。例えば、りんごが木から落ちる運動の測定を行います。
ここから質問者様がイメージできるかわかりませんが、りんごは時間が経つにつれて(下に落ちるにつれて)落下するスピードが速くなるんです。今、実験として、1秒ごとにりんごのスピードを測定したとします。そしてその結果をグラフにプロットしていくと、直線になることがわかります。(ここがわかりにくいかもしれませんが、実際に実験を行うとそのようになるのです)

数学の問題のように初めから「時速100kmで走る」とか「1個100円のガム」とかいうことが与えられていれば直線になることはすぐにわかります。
しかし、自然界の法則はそうもうまくいきません。つまり、実験を行ってその結果をプロットした結果が直線状になっていたときに初めて「何らかの法則があるのではないか」ということがわかり、上で書いた「Aの値さえわかれば」の「A」の値がプロットが直線状になった結果、初めてわかるのです。

そして、プロットが直線状になっているということは、永遠にそうなることが予想されます。つまり、今現在はりんごが木から落ちたときしか実験できませんが、その結果を用いて、もしりんごが雲の上から落としたときに地面ではどのくらいのスピードになるかが推測できるようになるわけです。ここで、このことがなぜ推測できるようになるかというと、(1)で書いた関係式があるからです。このように「なんらかの法則があることが推測でき、それを用いて別の事象が予言できるようになる」ことが「線形」が重要だと考えられる理由です。

しかし、実際に飛行機に乗って雲の上からりんごを落としたらここで推測した値にはならないのです。スカイダイビングを想像するとわかると思いますが、最初はどんどんスピードが上がっていきますが、ある程度でスピードは変わらなくなります。(ずっとスピードが増え続けたら、たぶんあんなに空中で動く余裕はないでしょうか??)つまり、「線形から外れる」のです。

では、なぜスピードが変わらなくなるかというと、お分かりになると思いますが、空気抵抗があるからなんですね。(これが昨日「世の中そううまくはいかない」と書いた理由です)つまり、初めは「線形」かと思われたりんごを落とすという実験は実際には「非線形」なんです。非線形のときは(1)の関係式が成り立たないので、線形のときほど容易には現象の予測ができないことがわかると思います。


では、非線形だと、全てのことにおいて現象の予測が難しいのでしょうか?実はそうでもありません。例えば、logは非線形だということをNo.5さんが書かれていますが、「片対数グラフ」というちょっと特殊な形のグラフを用いるとlogや指数関数のグラフも直線になるんです。つまり、普通のグラフでプロットしたときに「非線形」になるため一見何の法則もないように見えがちな実験結果が「片対数グラフ」を用いると、プロット結果が「線形」になってlogや指数関数の性質を持つことが容易にわかり、それを用いて現象の予測を行うことが(もちろん単なる線形よりは難しいですが)できるようになるわけです。


これが私の「線形」「非線形」の理解です。つまり、

1) 線形の結果の場合は同様の他の事象の推測が容易
2) 非線形の場合は同様の他の事象の推測が困難
3) しかし、一見非線形に見えるものも特殊な見方をすると線形になることがあり、その場合は事象の推測が容易である

このことからいろいろな実験結果は「なるべく線形にならないか」ということを目標に頑張ります。しかし、実際には先ほどの空気抵抗の例のように、どうしても線形にはならない事象の方が世の中多いんです。(つまり、非線形のものが多いんです)

わかりやすいかどうかよくわかりませんが、これが「線形」「非線形」を分ける理由だと思っています。

やっぱり、「線形の方がなんとなくわかりやすい」くらいの理解の方がよかったですかね(^^;;

昨日「線形の方がなんとなくてわかりやすくないですか」と書いたんですが、やっぱり理系の人間らしく、もうちょっときちんと説明してみます。昨日は数式をなるべく出さないように説明しようとがんばったんですが、今日は少しだけ出しますが、勘弁してください。m(__)m(あと、長文も勘弁してください)


数学的にはちょっとここまで言えるかわかりませんが、自然界の法則としては、「線形」が重要な意味を持つのは、xの値が変化するにつれて変化するyがあったときに、

(yの増加量)/(xの増加量)=...続きを読む

Qオイラー法とルンゲ・クッタ法

「オイラー法とルンゲ・クッタ法の計算精度を数値的に比較しなさい」と課題を出されましたがさっぱりわからないのです.
最低でもオイラー法と2次のルンゲ・クッタ法を比較しないといけないのですがどのような方法でどのような結果になるのでしょうか?
お願いします

Aベストアンサー

「数値的に」ということは,理論的な解析はやらなくても良いようですね.

直接的にやり方をお教えするのは禁止されていますので,簡単に手順の概要をしますから,あとは実際にやって考えてみて下さい.

1. 数値計算に頼らなくても,解が解析的に求まる微分方程式を用意する
(調和振動子,バネとかが良いかもしれません)

2. 「刻み幅」を同じ値にし,オイラー法とルンゲクッタ法で解を求めていく

3. 解析解(微分方程式を実際に解いた式)と数値計算結果の差を比較する
(グラフを描いてみると良いかもしれません.差の絶対値を取る方が良いと思います)

4. 「刻み幅」(ステップサイズ)の大きさを半分,もしくは2倍にして,上記1~3を再度試みる

5. 時間の許す限り,4. を繰り返す
(刻み幅を10倍とかやってみても良いかもしれません)

参考URLの本に,この辺のことは全部書いていますので,御購入なさってはいかがでしょうか.

頑張って下さい.

参考URL:http://tinyurl.com/65udeo

「数値的に」ということは,理論的な解析はやらなくても良いようですね.

直接的にやり方をお教えするのは禁止されていますので,簡単に手順の概要をしますから,あとは実際にやって考えてみて下さい.

1. 数値計算に頼らなくても,解が解析的に求まる微分方程式を用意する
(調和振動子,バネとかが良いかもしれません)

2. 「刻み幅」を同じ値にし,オイラー法とルンゲクッタ法で解を求めていく

3. 解析解(微分方程式を実際に解いた式)と数値計算結果の差を比較する
(グラフを描いてみる...続きを読む

Q差分法とオイラー法の違いについて

最近微分方程式の数値解析について学びだした者です。

微分方程式の数値解法として差分法とオイラー法があると思うのですが、この2つの違いや互いの位置づけはどうなっているのでしょうか?

また、差分法には風上法などがありますが、これらとオイラー法の位置づけについても教えていただきたいです。

できればこれら近辺の全体的な体系について教えていただけるとうれしいです。よろしくお願いします。

Aベストアンサー

 すいません、#1です。#1では話を簡単にしようと思って、差分法の定式化を簡略にし過ぎました。もう気づいていると思いますが、

 オイラー法:
  y[i+1]=(1+h)*y[i]     (1)

に対して、差分法:
  y[i+1]-(1+h)*y[i]=0   (2)

としてしまっては、(1)と(2)は全く同じです。差分法で、

 (y[i+1]-y[i])/h=(y[i+1]+y[i])/2   (3)

くらいの事はしておかないと、領域型の性質を持ちません。領域型をめざすなら、これ以上は簡単にできないと思います。(3)と(1),(2)の違いですが、(1),(2)では(移行すれば)、

 (y[i+1]-y[i])/h=y[i]    (4)

で、(3)との違いは、右辺にy[i+1]を考慮するかどうかだけです。

 (3)では左辺の数値微分の結果を、x[i+1]とx[i]の間の中点における微分係数と解釈し、それを中点における関数値に等しいとしています。中点における関数値は、y[i+1]とy[i]の平均で、十分良く近似できるとも仮定しています。

 (1),(2),(4)では、y[i+1]を計算するために、y[i]の情報しか使いませんが、(3)では(今は一点だけですが)まわりの点の情報も使って、平均的に良好な解を得ようとします。ここが直接法と領域型の発想の違いだと言えます。

 式の上ではほんのわずかな違いですが、結果の違いはけっこうあります。添付図は、Excelで計算したものです(^^;)。

  ・黒線が、y=e^x
  ・青丸が、(3)
  ・赤線が、(1),(2),(4)

の結果です。

 すいません、#1です。#1では話を簡単にしようと思って、差分法の定式化を簡略にし過ぎました。もう気づいていると思いますが、

 オイラー法:
  y[i+1]=(1+h)*y[i]     (1)

に対して、差分法:
  y[i+1]-(1+h)*y[i]=0   (2)

としてしまっては、(1)と(2)は全く同じです。差分法で、

 (y[i+1]-y[i])/h=(y[i+1]+y[i])/2   (3)

くらいの事はしておかないと、領域型の性質を持ちません。領域型をめざすなら、これ以上は簡単にできないと思います。(3)と(1),(2)の違いですが、(1),(2)...続きを読む

Q固有値と固有ベクトル・重解を解に持つ場合の解法

以前質問させていただいたのですが、教科書に固有値が重解の場合の固有ベクトルを求める解法が省かれていて理解できませんでした。
問題はこんな感じです。
2×2行列式A
A=
|1 -1|
|4 -3|
の固有値と固有ベクトルを求めよ。
(自分の解法)
まず
与式=
|1-t -1|
|4 -3-t|
サラスの方法で展開し、
(1-t)(-3-t) - (-1)・4
=t^2 + 2t 1
=(t+1)^2
となるので固有値をλ1,λ2として、
λ1=-1,λ2=-1
(ここまではできたのですが、解が重解になってしまいました。固有ベクトルを求める方法ができなくてこまってます。)

固有値λ1=λ2=-1より、求めるベクトルをx=t[x1,x2]とすると
A=
|1-(-1) -1 |
|4 -3-(-1)|
=
|2 -1|
|4 -2|
よって
2x1-x2 = 0
4x1-2x2 = 0
この二つは同一方程式より、x1 = 2x2
任意の定数αをもちいてx1 = αとすれば、
x = αt[1,2]

しかし、答えには、
x1 = αt[1,2]
x2 = βt[1,2] + αt[0,-1]

とありました。なぜなでしょう?
参考にしたページなんかを載せてくれるとありがたいです。

ちなみにこんな問題もありました。
A=
|0 0 1|
|0 1 0|
|-1 3 2|

これは固有値がすべて1になる場合です。
これも解法がのってませんでした。

以前質問させていただいたのですが、教科書に固有値が重解の場合の固有ベクトルを求める解法が省かれていて理解できませんでした。
問題はこんな感じです。
2×2行列式A
A=
|1 -1|
|4 -3|
の固有値と固有ベクトルを求めよ。
(自分の解法)
まず
与式=
|1-t -1|
|4 -3-t|
サラスの方法で展開し、
(1-t)(-3-t) - (-1)・4
=t^2 + 2t 1
=(t+1)^2
となるので固有値をλ1,λ2として、
λ1=-1,λ2=-1
(ここまではできたのですが、解が重解になってしまいました。固有ベクトルを求める方法ができなくて...続きを読む

Aベストアンサー

重解であろうがどうであろうが,求める方法は同じだから
わざわざ取り上げることはないという話でしょう.

No.1さんと同様,記号の混乱があるので
「参考書」やらが間違ってるのか,質問者の転記ミスなどかは
分かりませんが,
>とありました。なぜなでしょう?
答えを確かめましたか?
本当にその「解答」があってますか?
大学の数学の本なんて結構間違い多いですよ.

ちなみに・・・λが固有値のとき
(A-λI)x = 0 の解空間が固有空間です.
これは線型写像 A-λI のカーネル Ker(A-λI) だから
n次の正方行列を相手にしてる場合は
n=dim(Im(A-λI))+dim(Ker(A-λI))
=rank(A-λI) + dim(Ker(A-λI))
だから
固有空間の次元
= dim(Ker(A-λI))
= n - rank(A-λI)

したがって,
A=
|1 -1|
|4 -3|
のとき,λ=-1とすれば
A-λI= <<<--- 質問者はここを書き間違えている
|1-(-1) -1 |
|4 -3-(-1)|
=
|2 -1|
|4 -2|
だから,rank(A-λI)=1
よって,固有空間は1次元
だから,本質的に(1,2)以外に固有ベクトルはないのです.
(0,-1)が固有ベクトルではないことは容易に確認できます.

A=
|0 0 1|
|0 1 0|
|-1 3 2|
の場合も同様.A-λIのランクを計算すれば2だから
固有空間の次元は1で,計算すれば(1,0,1)を固有ベクトルと
すればよいことが分かります.

重解であろうがどうであろうが,求める方法は同じだから
わざわざ取り上げることはないという話でしょう.

No.1さんと同様,記号の混乱があるので
「参考書」やらが間違ってるのか,質問者の転記ミスなどかは
分かりませんが,
>とありました。なぜなでしょう?
答えを確かめましたか?
本当にその「解答」があってますか?
大学の数学の本なんて結構間違い多いですよ.

ちなみに・・・λが固有値のとき
(A-λI)x = 0 の解空間が固有空間です.
これは線型写像 A-λI のカーネル Ker(A-λI) だから
n...続きを読む

Q接平面の式

曲面z=3-x^2-y^2 の点(1,1,1)における接平面の式は
どのように求めればいいのでしょうか?

また、その接平面から距離が√5となる平面の式も
求めたいのです。
よろしくお願いします。

Aベストアンサー

参考程度に

「曲面z=3-x^2-y^2 の点(1,1,1)における接平面の式は
どのように求めればいいのでしょうか?」

接平面の方程式がいりますね。
z=f(xy), 点(a,b,c) の時の 接平面の方程式は、
z-c=fx'(a,b)(x-a)+fy'(a,b)(y-b)
ですね。
z=3-x^2-y^2 の点(1,1,1)の場合は、
c=1, {∂f(xy)/∂x}(1,1,1)=-2x=-2
{∂f(xy)/∂y}(1,1,1)=-2y =-2
z-1=-2(x-1)-2(y-1)=-2x-2y+4
z=-2x-2y+5
ということですかね。

Q行列 線形代数 "diag"って何ですか?

ロボット制御のなかで,おそらく行列だと思うんですが,“diag”という記号が出てきました.何の事か分からないのでどなたか教えてください.

Aベストアンサー

diagは対角行列を出力する関数です。
例えば、diag(1,2,3)なら(1,1)成分は1、(2,2)成分は2、(3,3)成分は3で他は0の行列になります。

Qe^(-x^2)の積分

e^(-x^2)の積分はどうやったらよいのでしょうか?
どなたか分かる方、よろしくお願いします。

eは自然対数の底でe^(-x^2)=exp{-x^2}

Aベストアンサー

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
だから、e^-(x^2)を積分する代わりにe^-(x^2+y^2)を積分してその√を取れば解が得られるという論法を利用するんですね。
四角形の領域で
I=∫[x,y:0→a]e^-(x^2+y^2)dxdy
を積分するにはちょっとなんで、四角形に接する大小の円で挟み撃ちを考えるんですね。
半径aの(1/4)円では、
極座標変換して、(x^2+y^2)=r^2, dxdy=rdrdθ
=∫[0→a]e^-(r^2)dr∫[0→π/2]dθ
=(1/2)(1-e^-a^2)(π/2)=(π/4)(1-e^-a^2)
同様に、半径√2aの(1/4)円では、
=(π/4){1-e^-(2a^2)}
だから、
x:0→a
√{(π/4)(1-e^-a^2)}<∫[0→a]e^-(x^2)dx
<√{(π/4){1-e^-(2a^2)}}
が回答ですね。これ以上は数値表を参照ですね。
a→∞ であれば、
∫[0→∞]e^-(x^2)dx=(√π)/2
が回答になりますね。
広域積分でも検索すれば参考になるかも。

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
...続きを読む

Qエクセルで片対数グラフを作る

エクセルで片対数グラフを作る方法を詳しく教えてください。お願いします。

Aベストアンサー

グラフの数値軸のところで右クリックして
軸の書式設定(O)→目盛(タブ名)

対数目盛を表示する(L)
にチェックを入れてください。

Q「ノルム、絶対値、長さ」の違いについて

あじぽんと申します。よろしくお願いします。

ベクトルや複素数などに出てくる「ノルムと絶対値と長さ」というのは同じことを違う言葉で表現しているのでしょうか?
手元にある書籍などには全てが同じ式で求められています。
同じ式で表現されていても意味は少しづつ違っていたりするのでしょうか?

よろしくお願いします。

Aベストアンサー

どれも同じような性質を持ちますが、違いの1つとして定義される空間が違います。

「絶対値」は、実数や複素数といった「数」に対して定義されます。
定義は、一通りしかありません。
ベクトルに対して、絶対値を求めるという言い方をする場合もあるかもしれませんが、それはベクトルの長さを表す記号に絶対値の記号を利用する場合があるからであり、参考書にも文章として「ベクトルの絶対値」という言い方はあまりされていないのではないでしょうか?



「長さ」というのは、空間にある「線」に対して定義できます。
数に対しては「長さ」という言い方はあまり聞かないと思います。
例えば、「3」の長さというような言い方は耳になじまないと思います。
一方、ベクトルの場合は、「矢印」という「線」になりますので「長さ」が定義できます。



最後の「ノルム」は、線形空間に対して定義できます。(もちろん実数、複素数やベクトルも線形空間です)
ノルムの条件を満たせばノルムになるため、複数のノルムが考えられます。
そのため、「(1,1)というベクトルに対するノルムは?」
という質問に対しては、「どのノルムを使うか?」という条件が欠けているため厳密に言うと「解答はできません」。
例としてよく扱われるノルムは「ユークリッドノルム」と言われ、通常のベクトルの長さと等しくなります。

ベクトルに対するノルムでは、「最大値ノルム」というのが他の例としてよく使われます。
これは、ベクトルの各要素の最大値で定義されます。
(例:(3,1,5)というベクトルの最大値ノルムは、3つの数字の最大値である5になります)

ノルムというと、線形空間であれば定義できるため、
f(x) = 3x^2+5x
という数式に対するノルムというのも考えられます。
(数式は、定数倍したり、足し算したりできますよね)
数式に対して「絶対値」とか「長さ」と言ってもピンと来ないですよね。

しかし、まだやられていないかもしれませんが、数式に対するノルムというのは存在します。


そうすると、なんでこんなんがあるねん。って話になると思います。

ここで、ベクトルに対してある定理があったとします。

それがさっきのような数式など他の線形空間でも成り立つんだろうか?
というのを考えるときに「ノルム」の登場です。

その定理の証明で、「ベクトル」として性質を使わずに「ノルム」の性質だけを使って証明ができれば、
それは「ベクトル」に対する証明でなくて「ノルムを持つもの」に対する証明になります。
(ちょっと難しいかな?)


このようにして、定理の応用範囲を広げるために「長さ」や「絶対値」の考え方をベクトルだけでなく「線形空間」という広い考え方に適用できるようにしたのが「ノルム」になります。

どれも同じような性質を持ちますが、違いの1つとして定義される空間が違います。

「絶対値」は、実数や複素数といった「数」に対して定義されます。
定義は、一通りしかありません。
ベクトルに対して、絶対値を求めるという言い方をする場合もあるかもしれませんが、それはベクトルの長さを表す記号に絶対値の記号を利用する場合があるからであり、参考書にも文章として「ベクトルの絶対値」という言い方はあまりされていないのではないでしょうか?



「長さ」というのは、空間にある「線」に対して...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む


人気Q&Aランキング