
z方向に一定の磁場Bが印加されているとき、ハミルトニアンを
H=-γhBSzとする
hはプランク定数/2πのこと、Szはスピン角運動量演算子のz成分
このとき、Sを時間に依存する演算子とする。
(1)Sxに対するハイゼンベルクの運動方程式を立てる
(2)ハイゼンベルク運動方程式からSx(t)の時間平均<Sx(t)>をもとめよ。ただし<Sx(0)>=0
自分でやったところ、<Sx(t)>=AsinγhBt になりましたが、調べてみたところ、磁気モーメントの歳差運動の角周波数はγBが正解のようです。時間推進演算子をつかった方法で<Sx(t)>をもとめると、角周波数はγBになりました。どうしてもhの分がじゃまになったので、Give upしました。どうぞよろしくお願いします。
それとハイゼンベルク運動方程式はいろいろ参考書やなんかをみても、運動方程式そのものの証明ばかりで、使い方が乗っていません。もし余裕があれば、簡単な解き方の指針なるものを享受していただければと思います。
No.1ベストアンサー
- 回答日時:
>z方向に一定の磁場Bが印加されているとき、ハミルトニアンを
>H=-γhBSzとする
ここでのγと
>調べてみたところ、磁気モーメントの歳差運動の角周波数はγBが正解のようです。
一般的に使われるここでのγは次元からして異なる係数です。
良く出てくる角周波数がγBとなる場合のγでハミルトニアンを表すと
H=-γBSz
となります。つまり、今回の問題で出てくるγは上記の式のγをhで割ったものなのです。
ですから、今回の問題では角周波数がγhBになってなんらおかしくありません。
この回答への補足
ついでで申し訳ないですが、
exp(-iθSz) Sx exp(iθSz) = Sxcosθ + Sy sinθ
という関係式ってなにか、名前がありますか?自分が見た2,3冊の教科書にはこの関係式が載っていませんでした。
No.2
- 回答日時:
>exp(-iθSz) Sx exp(iθSz) = Sxcosθ + Sy sinθ
>という関係式ってなにか、名前がありますか?自分が見た2,3冊の教科書にはこの関係式が載っていませんでした。
特別に何か名前があったかは定かではない。
証明自体はさほど難しくない。exp(iθSz),exp(-iθSz),cosθ,sinθをテーラー展開して係数を比較することになる。
なお、テーラー展開した式からわかるように、exp(iθ)やcosθ,sinθに入れるθの式は無次元量でなければならない。展開した式のθの次数が発散しているのですぐにわかると思う。
exp(-iθSz) Sx exp(iθSz) = Sxcosθ + Sy sinθ
上記の式からθが無次元量、θSzが無次元量であることからSzが無次元量であることがわかる。
なお、別の質問の補足にあった内容で、
>磁気モーメントをμ=γhSと定義していました。おそらくこれが暗にSが無次元の量示唆してたのかなと思います
とありますが、これだけではSzが無次元量とはわかりません。この質問の#1で述べたようにSzがhと同じ次元を持っていたとしてもγの次元を変えることでも同じ式を導くことが出来るからです。Szが無次元量であることは、さらにその問題の前提となる定義部分にあるのだと推察されます。
この回答への補足
いちおう元の問題文載せます。
「磁場中にある磁気モーメントは、磁場方向を回転軸とする歳差運動をする。このことを量子力学的に示すために、スピン演算子S=(Sx,Sy,Sz)の期待値の時間発展をハイゼンベルグ描像とシュレーディンガー描像の2通りの方法で計算しよう。ただし、磁束密度は時間によらずB=(0,0,B)とし、スピンSと磁気モーメントμとの間にはμ=γhSの関係がある。ここで、γはスピンの磁気回転比、hはプランク定数を2πで割ったものである。」
磁気モーメントの単位はJ/T、hの単位はJ・S、磁気回転比の単位は1/(S・T)と調べた結果、Sは無次元とわかるのですが、磁気回転比の次元とか普通覚えるものなのかな…。また、スピン演算子という言葉を使っているから、Sは単にスピンのことを言ってるのかと、ネットで調べてみても、スピン角運動量演算子のことをスピン演算子ともいうみたいですし…
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
-cosθがsin(θ-π/2)になる理由が...
-
高校物理の質問です。 【問題】...
-
なぜ、θが微小なとき、tanθ≒θと...
-
物理の問題が一致しません
-
電磁気の問題です
-
sinとcosの使い分けの仕方を教...
-
なぜsinθはθに近似できるのです...
-
くさび状態の2物体間のすべりの...
-
フーリエ級数展開をExcelのFFT...
-
機械設計のねじ
-
格子定数の求め方,近似について
-
【数学】梯子の角度はハシゴの...
-
有限長ソレノイドコイルの中心...
-
毛細管現象と表面張力について
-
√3sinX−cosX≦√3 (0≦θ≦2π) のと...
-
空間平均について
-
流体力学について質問です。 問...
-
物理で出てきたのですが数学の...
-
慣性モーメント
-
中が中空の球の慣性モーメント...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
なぜ、θが微小なとき、tanθ≒θと...
-
電磁気の問題です
-
高校物理の質問です。 【問題】...
-
有限長ソレノイドコイルの中心...
-
-cosθがsin(θ-π/2)になる理由が...
-
機械設計のねじ
-
√3sinX−cosX≦√3 (0≦θ≦2π) のと...
-
空間平均について
-
中が中空の球の慣性モーメント...
-
格子定数の求め方,近似について
-
なぜsinθはθに近似できるのです...
-
矩形波duty比を変えた場合のフ...
-
sinとcosの使い分けの仕方を教...
-
2つの力の合成の公式
-
束縛運動
-
くぼみの表面積
-
解き方を教えてください!お願...
-
フーリエ級数展開をExcelのFFT...
-
物理の問題が一致しません
-
速度の合成
おすすめ情報