都道府県穴埋めゲーム

海抜0m と海抜1,000 m のところの気圧の差を計算とかで出せるのでしょうか?
全くの素人です。よろしくお願いします。

A 回答 (6件)

こんにちは。


理科年表に載っていました。
高度と気圧の関係は下記のようになっているそうです。

h=18410.0×(log10P0-log10P1)

h:標高(m)
P0:海抜0mの気圧(1013.25hPa)
P1:標高hmの気圧(hPa)

この式で海抜1000mでの気圧P1を求めると、

P1=10^(log10P0-h/18410.0)=894.1hPa

となります。
但し、上記の標高hには、気温と湿度を決定し、別表に基づいた補整値が加減されなければなりません。ですから、正確な標高は別表がなければ求めることはできません。また、今回のように気圧を求める場合の補整表は掲載されていませんでした。
ですが、とあるHPで見付けた標高1000mでの気圧は898.8hPaとなっていましたから、だいたいの値でしたらこれで計算ができると思います。
    • good
    • 1

正確な計算ではありませんが、海抜が1,000m位までなら下記の方法で概略値を計算しても良いと思います。



(1)大気の層は上空に行くほど薄くなりながら約10,000mの上空まで続きます。
(2)気圧は海抜0mの所が一番高く海抜が上がるほど低くなりますが、この気圧の変化を直線的であると仮定します。
(3)このように考えると海抜0mの所が1気圧=1013hPaで海抜10,000mでは気圧ゼロになります。
気圧の変化が直線的であるとすると海抜1,000mでは
 1×(10,000-1,000)÷10,000=0.9気圧(=900hPa)
になります。

結果はNo.2の回答と同じになります。

この計算方法で少し遊んでみますと海抜が1,000m上がるごとに気圧が約10%づつ下がりますので、富士山頂上:海抜3700mでは気圧は約37%減の0.63気圧になります。

正確な計算ではありませんので、目安程度に使用してください。
    • good
    • 4

高度差が1kmしかないので、密度はほぼ一定とみなして計算してよさそうです。



回答No2の2番目のURLのグラフは地表から高度3kmまでが図示されていますが、この範囲ではほぼ直線になっています。つまり、この高度の範囲では回答No1の考え方が成り立つ、ということだと思います。
    • good
    • 0

No1の回答は、空気の密度が高度によらず一定の場合(ひょっとすると、温度も一定という場合)のみに成り立つ考え方です。

    • good
    • 1

高度と気圧の関係は、

http://www2.neweb.ne.jp/wd/nobuaki/New_Homepage/ …
のグラフのような曲線になっているようです。

海抜1km付近での関係は、
http://www2.neweb.ne.jp/wd/nobuaki/New_Homepage/ …
のグラフにあるような直線で近似できるようです。

グラフでは地表がある気圧の時の値がグラフになっています。
参考URLの説明文では、「何m上昇すると何気圧低くなる」というまとめかたをしているので、高度差と気圧差の関係は、地表の気圧によらずほぼ一定と考えられるのかもしれません。

2番目のURLで、
「10m上昇するごとに気圧は1hPa」
となっているので、
1000m違うと、100hPa (= 1000m/10m*1hPa) の差になると思います。
    • good
    • 1

経験がないんですが、計算できそうですね。


単純に考えてよさそうです。

圧力というのは360度どの方向に対しても、同じ力が加わるのですが、
下のほうにかかる力だけイメージすればよさそうです。

要は、1000m分の高さの空気の重みがかかっているのとかかっていないのとでの、重さの差を考えればよさそうです。

引き算した状態を考えれば、要するに、
高さ1000mの空気の重みが、単位面積の地面に対してかかる力(=圧力)を求めればよいということです。


・単位体積あたりの空気の質量 A[kg/m^3]
 (何かの本で調べることができるはずです)

・高さ 1000[m]

Aに1000を掛け算した数字のままで、kgを「キログラム重」に置き換えてしまえば、圧力になりますね。(kgw/m^2)

これで一応すでに答えにはなっていると思いますが、
あとは、キログラム重をパスカルとかヘクトパスカルに換算すれば、さらによい感じですかね。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!


おすすめ情報