
No.6ベストアンサー
- 回答日時:
再度No.3です。
ばらつきという問題ではないです。集中定数回路というのは、抵抗、キャパシタ、インダクタの3種の部品でできた回路のことです。ICやトランジスタも入力や出力から見るとこの3種の部品で等価にすることができます。
抵抗は周波数に無関係に一定抵抗を示す素子です。
キャパシタは周波数に反比例したリアクタンスを示します。
インダクタは周波数に比例したリアクタンスを示します。
これらの部品を組み合わせると、どうしても周波数に無関係な回路を作ることができません。
あれ? 抵抗は周波数に無関係でしたよね。 でも、実際には抵抗に大きさがある限り、周囲の金属との間に浮遊容量があり、抵抗自体の長さがインダクタンスを持ちます。従って、周波数に無関係な抵抗と言われる素子も、実際に共振周波数が存在し、事実上周波数依存性を持ちます。単なる銅線だって表皮効果などがあって周波数依存性を持ちます。
唯一、周波数依存性を余り考えなくて良いものが「伝送線路」です。(ちょっと大げさな表現です)(実際は同軸ケーブルだって周波数が高くなると減衰も激しくなるし、パルス波形は崩れます)
つまり、集中定数でできた回路(アンプとかアッテネータとかミキサとか・・・)は、周波数によらず一定のインピーダンスを持つことが難しいのです。決してばらつきの問題ではありません。
あるアンプは100MHzで測ると入力インピーダンスが純抵抗の50Ωであったとしても、1GHzで測ると20Ω-j60Ωなどというインピーダンスになったりします。この例だと、100MHzではマッチングしていて、反射はおきませんが、1GHzに対しては反射します。この振る舞いは大抵の場合、かなり複雑です。
デジタル信号を念頭に置いておられるようですので、扱う信号はパルスでしょう。そうなるといわゆるインピーダンスマッチングの手法が使えないことが多く、反射から逃れられないことが多いために、一般に「高周波では長い伝送線路でリンギングが起きる」と言われているのです。
No.5
- 回答日時:
No.3です。
>高調波の場合だと信号源や負荷抵抗も分布定数の振舞いをみせ、特性インピーダンスとのミスマッチが起きてしまうということでしょうか?
ちょっと違います。信号源や負荷は「集中定数回路」になり、これは相当頑張っても、あらゆる周波数で一定のインピーダンスを維持するのが難しいのです。そのためにあらゆる周波数で一定のインピーダンスを示す分布定数の伝送線路との間でミスマッチが起こるのです。
高周波かそうでないかは本質ではありません。旧ソ連から電気を買う話しが昔ありましたが、数1000kmの伝送路(送電線)の両端に発電所とか電力需要家という集中定数回路がつくために反射が起こり、線路上の場所によって電圧が違う「定在波」が生じて具合が悪いこことになる、という話しがありました。低周波でもそれなりに「寸法」が大きいと同じ反射現象が認識されます。
(反射は周波数に無関係ですが、目立つかどうかは線路長と周波数による、という訳です。
No.4
- 回答日時:
インターネットで調べても伝送線路でなぜ反射が起きるのかを上手く説明しているものはあまり見つかりません。
反射を説明する前に、信号が伝送線路をどのように伝わって行くかを説明します。
細かいところはかなり省いています。
┌R0─SW────────────
電池 ↑
└───────────────
上図の様に伝送線路の端に電池とSWが付いていてオフになっているとします。
R0は特性インピーダンスに等しい抵抗です。
SWがオンになるとSWの右側に電圧が加わりますが電気(電磁場)は光より早くは伝わらないのでオンした瞬間はSWのすぐ隣にしか電圧は加わりません。
この時電圧が加わったところまでは電流が流れます。
下図の様です。↑は電圧、→は電流です。
┌R0──────────────
電池 ↑→↑
└───────────────
もっと時間がたつとこのようになります。
┌R0──────────────
電池 ↑→↑→↑→↑→↑→↑
└───────────────
この時の電圧と電流の比はどうなるかと言うと√(L/C)になります。
なぜか?
電圧をV、電流をIとすると線路のLには1/2・LI^2、1/2・CV^2のエネルギーが加わります。
エネルギーは等分されるので1/2・LI^2=1/2・CV^2です。
この式からR=V/I=√(L/C)になります。
信号が線路の端に到達するとどうなるか?
端がR0で終端されている場合。
┌R0────────────── →
電池 ↑→↑→↑→↑→↑→↑→↑→R0↑
└───────────────
抵抗にVが加わりIが流れます。反射は有りません。
反射のある場合、
オープンの場合、それ以上電流が流れないので逆流します。その結果電圧が2倍になります。
~~~~~~~~~~~~~~↑←↑
┌R0──────────────
電池 ↑→↑→↑→↑→↑→↑→↑→↑
└───────────────
電流がキャンセルされるので
~~~~~~~~~~~~~←↑↑↑
┌R0──────────────
電池 ↑→↑→↑→↑→↑→↑→↑↑↑
└───────────────
最終的には
~~↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑
┌R0──────────────
電池 ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑
└───────────────
ショートの場合、電圧はゼロになりますが電流はそのまま流れます。
そこに次の電流が流れ込むので電流が2倍になります。
~~~~~~~~~~~~~~~→
┌R0──────────────┐
電池 ↑→↑→↑→↑→↑→↑→↑→│
└───────────────┘
電圧ゼロのところが徐徐に進む。
~~~~~~~~~~~~~→→→
┌R0──────────────┐
電池 ↑→↑→↑→↑→↑→↑→→→│
└───────────────┘
最終的には
~~→→→→→→→→→→→→→→
┌R0──────────────┐
電池 →→→→→→→→→→→→→→│
└───────────────┘
終端が特性インピーダンスで無い場合、例えば2*R0の場合
┌R0──────────────
電池 ↑→↑→↑→↑→↑→↑→↑→2*R0
└───────────────
流れてきた電流の全てが2*R0に流れ切らないので一部が逆流します。
その時の電圧は次のようです。
電流値は2*Iで、これを線路にインピーダンスR0と終端抵抗2*R0が並列になったものに流れるとして次のようになります。
Rp = 1/(1/R0+1/(2*R0))= R0/(1+1/2)=R0*2/3 として
Vr = 2*I*R0*2/3 = 4/3*V (I*R0=Vなので)
R0で終端した時と比べて1/3だけ大きな電圧になります。
~~~~~~~~~~~~~~↑←↑ 1/3の反射
┌R0──────────────
電池 ↑→↑→↑→↑→↑→↑→↑→↑
└───────────────
反射の様子を実際に観測する測定器が有ります。
TDR法です。
http://ednjapan.com/edn/articles/0712/01/news017 …
No.3
- 回答日時:
>参考書には高調波成分に対して伝送線路の長さが無視できなくなり、周波数ごとにインピーダンスの変化が生じて、特性インピーダンスとの不整合が起きると書いてありますが、・・・
これはずいぶん不親切な表現ですね。主語や但し書きを追加すれば、この表現は間違いではないですが、あまりに不親切です。
考え方の順序はこうです。
1.伝送線路は通常は非常に広帯域です。つまり周波数によらず特性インピーダンスは一定です。
2.伝送線路の両端に接続する集中定数回路はたいていインピーダンスの周波数依存性を持ちます。
3.伝送線路に集中定数回路を接続すると、ミスマッチを生じる周波数では反射は生じています。50Ωの同軸ケーブルに1kΩの負荷抵抗をつければ低周波(例えば1Hzのサイン波)でも反射します。
4.そして、伝送線路が無視できない長さであり、波形がステップ状だと、反射がリンギングという形で見えてきます。
なお、伝送線路のどちらか一方でもインピーダンスマッチングがとれていればリンギングは起きません。
反射はおきますが反射が往復しないで片道で消えてしまうので、リンギングにはならないのです。(マッチングしているところは反射しないから)
まとめると、インピーダンスが狂うのは伝送線路ではなく、信号源や負荷にありがちな集中定数回路であり、高周波でリンギングが起きるというのは、周波数が高いと不整合が起きやすいから、そして線路が長いと起きるというのは、長いと往復時間が長くなりリンギングとして見えてくる、ということになります。
この回答へのお礼
お礼日時:2012/08/21 12:26
ご回答ありがとうございます。高調波の場合だと信号源や負荷抵抗も分布定数の振舞いをみせ、特性インピーダンスとのミスマッチが起きてしまうということでしょうか?
No.2
- 回答日時:
特性インピーダンスが一定でも、伝送線路の両端での不整合があれば、反射波が発生し、透過波(端子電圧波形)にオーバーシュート(周期は伝送線路の往復時間)が発生しますし、整合していれば、オーバーシュートは発生しません。
>なのでマッチングはとれていて反射は起きないと考えています。
伝送線路の両端(入力端と出力端)でマッチングが取れていれば、反射は起きません。
オーバシュートが出るということは、伝送線路の両端でマッチングが取れていないということです。つまり、オーバシュートは、特性インピーダンスと両端の回路の入力インピーダンスや出力インピーダンスとがマッチングが取れていない証拠です。
No.1
- 回答日時:
集中定数回路と分布定数回路を行き来するからでしょう。
特性インピーダンスは分布定数回路のときに扱います。http://ja.wikipedia.org/wiki/%E7%89%B9%E6%80%A7% …
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
PWMインバータにおけるデッドタ...
-
充電器の表記の意味を教えて下...
-
アダプターはアンペアが違うと...
-
伝達コンダクタンス
-
DCDC 降圧 24V 20V
-
ダイオードの拡散電位について
-
電圧について質問です。日本は...
-
モーターのロータとアーマチュ...
-
1ルクスの明るさはどのくらい...
-
電球
-
テスターでのモーターの抵抗の...
-
パッケージ形空気調和機とユニ...
-
制御盤のアースの配線の仕方に...
-
消費電力について質問です。 電...
-
電気モーターに負荷がかかった...
-
電気が壊れて明るくなったり暗...
-
リアクタンスとリラクタンス
-
SDカードのデータを物理的に破...
-
ペルチェ素子を乾電池で弱駆動...
-
農業用トラクターのウィンカー...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
充電器の表記の意味を教えて下...
-
アダプターはアンペアが違うと...
-
このような波形から時定数を求...
-
サイリスタを使用した場合の電...
-
Arduinoの端子を過電圧から守る...
-
オシロスコープの入力カップリ...
-
定電圧測定と定電流測定の違い...
-
DC 6Vを USB 5Vにする市販機器...
-
電子部品のSI-8008HFEは、下の...
-
コンデンサによる残響音
-
交流発電機の出力電圧は負荷に...
-
フォトダイオードの使い方
-
太陽電池の内部抵抗・外部抵抗...
-
スライダックの入力側を一般の...
-
コッククロフト・ウォルトンの...
-
オシロスコープの使い方
-
高速デジタル通信の反射
-
整流回路の理論値
-
ペルチェ素子の TES1-12704と、...
-
ダイオード
おすすめ情報