
No.2ベストアンサー
- 回答日時:
>…普通に微分して増減表を書きX軸と交わることを書けばそれでいいのでしょうか。
グラフを描けば許容されますが、厳密にいうと不十分です。これは「中間値の定理」を適用するのです。
(1) f(x)=xsinx-cosx (0,π/2)
f(0) = -1<0, f(π/2) = π/2>0。f(x)は区間(0,π/2)で連続だから{←これをいう}
中間値の定理より{←これをいう}、区間(0,π/2)で少なくともひとつ実数解を持つ。
{なお、f'(x)=2sinx-xcosx = 2cosx(tanx - x/2)>0となり区間(0,π/2)で単調増加なので、実は区間(0,π/2)で唯ひとつ実数解を持つ;となります。これは、言及しなくてもいいでしょう。}
(2)g(x)=2^x+2^(-x)-3x (0,1)
g(0) = 2 >0, g(1) = -1/2 <0 。g(x)は区間(0,1)で連続だから{←これをいう}
中間値の定理より{←これをいう}、区間(0,1)で少なくともひとつ実数解を持つ。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
逆三角関数の方程式の問題です...
-
1 / (x^2+1)^(3/2)の積分について
-
数3の極限について教えてくださ...
-
位相がよく分かりません。 cos(...
-
重積分です Rは斜線部を示しま...
-
cos π/8 の求め方
-
複素数についての質問です。 1+...
-
積分 曲線の長さ
-
f(X)=[cosX]がなぜ不連続になる...
-
この問題の解き方を教えてください
-
数学3 定積分を求めるのに、x=2...
-
数III 定積分
-
arccos0の値ってなぜπ/2なんで...
-
実数解を持つということ
-
正五角形について
-
解析学の、接平面の方程式を求...
-
数学の証明問題です。
-
y=sin4θとy=cos4θのグラフの...
-
8iの三乗根を求めよ→なぜこうな...
-
三角関数の微分
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
位相がよく分かりません。 cos(...
-
1 / (x^2+1)^(3/2)の積分について
-
数3の極限について教えてくださ...
-
cosπ/2やcos0ってどのように求...
-
複素数のn乗根が解けません
-
1/5+4cosxの0→2πまでの積分で、...
-
重積分の問題
-
数学の問題です。 写真の積分を...
-
なぜ3/4πがでてくるのか 分かり...
-
重積分について
-
1/(sinx+cosx)の積分
-
数学IIIの積分の問題がわかりま...
-
複素数α=cos2π/7+isin2π/7にお...
-
y=sin4θとy=cos4θのグラフの...
-
cos π/8 の求め方
-
∫[0→∞] 1/(x^3+1)dx
-
積分∫[0→1]√(1-x^2)dx=π/4
-
sinθ=3/5、(π/2<θ<π)のとき・・...
-
√π/2 の意味
-
極座標θ r φの範囲
おすすめ情報