べき級数の収束半径を求めよ。

1,Σn=1 ∞ ((-1)^n)*n*2^n*z^n
2,Σn=1 ∞ n^3*z^n
3,Σn=0 ∞ ((2n+1)/n!)*z^n
4,Σn=0 ∞ ((-1)^n)*n!*z^n

以上の問題がわかりません。教えてください。
あまりわかっていないので丁寧にお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (11件中1~10件)

整級数 Σ{n=0~∞} a_n x^n の収束半径は



ρ = 1 / (lim{N→∞} sup{n≧N} |a_n|^(1/n)    …(i)

で定義されます。これにしたがって解いてもいいのですが、lim{n→∞} |a_n / a_(n-1)|が存在すれば

1 / ρ = lim{n→∞} |a_n / a_(n-1)|    …(ii)

が成り立ちますので、実際の問題を解くときには計算の楽なこちらを良く使います。
(ii)は「証明せよ」と指定のない限り、成り立つものとして使ってしまって大丈夫だと思います。
ご興味があれば証明を載せても良いのですが、あまり分かってらっしゃらないとの事なのでちょっと難解かもしれません。
ともあれ、解いて行きましょう。

1.
1 / ρ = lim{n→∞} |(-1)^n * n * 2^n|/|(-1)^(n-1) * (n-1) * 2^(n-1)|
    = 2 * lim{n→∞} |n / (n - 1)|
    = 2
 ∴ρ = 1/2

2.
1 / ρ = lim{n→∞} |n^3 / (n - 1)^3|
    = 1
 ∴ρ = 1

3.
1 / ρ = lim{n→∞} |(2n + 1) / n! / ((2(n - 1) + 1)) / (n - 1)!|
    = lim{n→∞} |(1 / n) * (2 + 1 / n) / (2 - 1 / n)|
    = 0
 ∴ρ = ∞

4.
1 / ρ = lim{n→∞} |(((-1)^n) * n!) / ((-1)^(n - 1)) * (n - 1)!)|
    = lim{n→∞} |n|
    = ∞
 ∴ρ = 0

計算ミスがあったらごめんなさい。(i)と(ii)とで確認しているので結果はあってると思いますが。
    • good
    • 0

『x0のある右近傍で微分可能かつ0でない関数f(x),g(x)が、x→x0+0で無限大であるとする。


もし lim{x→x0+0} f(x) / g(x) が存在するならば lim{x→x0+0} f'(x) / g'(x) も存在して
lim{x→x0+0} f(x) / g(x) = lim{x→x0+0} f'(x) / g'(x)』 …(i)
『x→+∞の時にも同じ事が成立する』 …(ii)
ってのもあったんですね。ってことは都合4パターンあるってことですね。勉強不足でした。

これを使えばsiegmundさんのおっしゃる通り簡単です。(ii)の方を使います。

lim{n→∞} (1/n) log n = を示すため、整数ではなく実数の関数でまず示します。

f(x) = log x, g(x) = x とすると、f(x),g(x)はx→+∞のとき無限大です。
lim{x→+∞} f(x) / g(x) が存在する事を示しましょう。
そのためには f(x) / g(x) が[a,+∞)で単調減少かつ下に有界である事が言えれば良いわけです。
aをeとすると都合が良いので[e,+∞)で考えましょう。この時
{f(x) + g(x)}' = {(1/x) log x}' = (1 - log x) / x^2 ≦ 0 (e≦x)、よって[e,+∞)で単調減少。
またこの区間でf(x),g(x)ともに正なので f(x) / g(x) > 0、よって下に有界。
これでlim{x→+∞} f(x) / g(x) が存在する事が示されましたので後は計算するのみ。
f'(x) = 1/x, g'(x) = 1なので
lim{x→+∞} (1/x) log x
= lim{x→+∞} f(x) / g(x)
= lim{x→+∞} f'(x) / g'(x)
= lim{x→+∞} 1/x
= 0
よってlim{x→+∞} (1/x) log x = 0 なので lim{n→+∞} (1/n) log n = 0 が示されました。

これで良いんですよね? >siegmundさん
    • good
    • 0

テキストによって書き方が違うかも知れませんが...



f(x),g(x) → ∞ のときも同型の式が成立し
(つまり,f'(x)/g'(x) が存在すれば,それが極限値),
これも含めてロピタルの定理と呼んでいます.

今なら,f(x) = ln x,g(x) = x で,
f'(x) = 1/x,g'(x) = 1 ですから
lim f(x)/g(x) = lim f'(x)/g'(x) = lim (1/x) = 0
です.
lim は全部 x→∞ の意味.

同様の議論をすると,ln x の x→∞ での発散は,
どんなべき関数 x^a (a>0) より弱いことがわかります.
    • good
    • 0

> (1/n) log n はロピタルの定理で簡単でしょう.



スミマセン、出来ないんですけど…。

ド・ロピタルの定理って

『x0のある右近傍で微分可能な関数f(x),g(x)≠0がx→x0+0のとき無限小であって、
lim{x→x0+0} f(x) / g(x) が存在するならば lim{x→x0+0} f'(x) / g'(x)も存在して、
lim{x→x0+0} f(x) / g(x) = lim{x→x0+0} f'(x) / g'(x)』
あるいは
『ある半直線[a,+∞)上で微分可能かつ0でない関数f(x),g(x)がx→+∞のとき無限小であって、
lim{x→+∞} f(x) / g(x) が存在するならば lim{x→+∞} f'(x) / g'(x)も存在して、
lim{x→+∞} f(x) / g(x) = lim{x→+∞} f'(x) / g'(x)』
ですよね?

(1/x) log x を f(x) / g(x)の形にしてしかもf(x),g(x)→0+0とするためには
f(x) = 1/x, g(x) = 1/(log x)と置く以外に思い付きません。そうすると
f'(x) / g'(x) = (log x)^2 / x
と更にややこしい式になってしまうんですが。
    • good
    • 0

siegmund です.


私は数学の専門家じゃないんで,余り突っ込まれるとボロが出るんですが...

lim sup という上極限になっているのは,
集積値がいくつもあったときに一番大きなものをとる必要があるからです.
今の問題では,集積値は一つしかありませんから
(つまり,lim sup ... = lim inf ... になっている)
sup は気にしなくていいはずです.

(1/n) log n はロピタルの定理で簡単でしょう.
    • good
    • 0

logを取るのであれば、コーシーアダマールの公式は


log(1 / ρ) = log((lim{N→∞} sup{n≧N} |a_n|^(1/n))
    = lim{N→∞} sup{n≧N} log |a_n|^(1/n)    …(i)'
となりますね。siegmund先生の回答をもう少し省略なしに見ていきますと

1.
log(1 / ρ) = lim{N→∞} sup{n≧N} log((n*2^n)^(1/n)
    = lim{N→∞} sup{n≧N} (1/n)(log n * log 2^n)
    = ?
    = log2   ∴ρ = 1/2

となり、supはn=Nの時なのか違うのかをどう判断すれば良いのか分かりません。
特に4.などは単調増加なのでsupとなるのはn=Nじゃないですよね?
そう言う場合はどう処理すればいいのでしょうか?

処理の問題とは別に
    lim{n→∞} (1/n)log n = 0
の理由もわかりません。

と言う訳で、改めまして
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(命題A) Nがある程度大きい時
  sup (1/n) log n = (1/N) log N
  n≧N

(命題B) lim (1/N) log N = 0
    N→∞

(命題C) lim{N→∞} sup{n≧N} log n = ∞
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
それぞれが成り立つ理由について教えてください。


ちなみにkarkarlさん、
> Stirling の公式,log n! ~ n log n [n → ∞ のとき]
で出てくる記号「~」の意味は分かりますか?念の為書いておくと、
lim{n→∞} a_n = lim{n→∞} b_n = ∞、かつlim{n→∞} a_n / b_n = 1 となる時、
a_nとb_nとは「同値」な無限大と言い、「a_n ~ b_n」と書きます。
a_n ~ αb_n (α≠0)の時、a_nとb_nとは「同位」の無限大といいます。
    • good
    • 0

sigmund です.



taropoo さんの No.5.
a_n が振動したり,という変なことはないから
(だからこそ,ダランベールの定理が使える),
普通に lim |a_n|^(1/n) を計算すればいいでしょう.

log を取るのが簡単ですか.

【1】
log |a_n|^(1/n) = (1/n) {log n + n log 2} → log 2
∴ 1/ρ = 2 ⇒ ρ = 1/2

【2】
log |a_n|^(1/n) = (3/n) log n → 0
∴ 1/ρ = 1 ⇒ ρ = 1

【3】
Stirling の公式,log n! ~ n log n [n → ∞ のとき] を使って
log |a_n|^(1/n) ~ (1/n) {log (2n+1) - n log n} → - ∞
∴ 1/ρ = 0 ⇒ ρ = ∞

【4】
log |a_n|^(1/n) ~ (1/n) n log n → ∞
∴ 1/ρ = ∞ ⇒ ρ = 0

Stirling の公式は,もう少し丁寧に書けば
n! ~ √(2πn) n^n e^(-n) {1 + (1/12n) + (1/288n^2) + ...}  [n→∞]
です.
    • good
    • 0

こう言うのは教科書によって表記が多少違ったりする事もあるんでしょうね。



私の使っている『微分積分学』(笠原晧司 著 サイエンス社)には回答No.3のように書いてありました。
コーシー・アダマール(タイプミス、失礼しました。)の定理としては絶対収束と発散に関する定理だけが書いてあり、収束半径と言う言葉は出てこず、その次に定義として収束半径および収束円について記してありました。

どちらにしても本質に問題はないですね。

それよりsiegmund先生、私は回答No.1ですべてダランベールの定理で解いてしまったのですが、実はコーシー・アダマールの定理でも頑張ってみたのですが、どうしても分からない点がいくつかありました。
これが正しければコーシー・アダマールで行けるのにと言うのがいくつかあるんですが。

1.Nがある程度大きい時
  sup n^(1/n) = N^(1/N)
  n≧N

2.lim N^(1/N) = 1
  N→∞

3.lim (N!)^(1/N) = ∞
  N→∞

3など1から∞までの相乗平均なので、その辺りから何とか攻めれないかと苦慮したのですがダメでした。

> (i)と(ii)とで確認しているので
と言ったのはこれらを正しいものとして計算したので、厳密には(i)で証明は出来ていないんです。
ご教授願えますか?
    • good
    • 0

siegmund です.


本題からちょっと逸れちゃいますが...

> (i)は「収束半径ってなに?」と言うのを決めた式なので
> やはり定義なのではないでしょうか?

いえいえ,級数の収束半径に関する最も基本的な定理ですが,やはり定理ですよ.
taropoo さんがNo.3 で,
「コーシーアマダールの定理は...」(タイプミスと思いますが,アダマール,です)
と書かれていることは,No.1の(i)と全く同じことですよ.
1/l (見づらいね~,イチ / エル,です)がρになっているだけです.
    • good
    • 0

お言葉ではございますがsiegmund様(笑)、(i)は「収束半径ってなに?」と言うのを決めた式なのでやはり定義なのではないでしょうか?



コーシーアマダールの定理は
『l = (lim{N→∞} sup{n≧N} |a_n|^(1/n)
として
|x| < 1/l なら Σa_n x^n は絶対収束し、
|x| > 1/l なら Σa_n x^n は発散する
(但しl=+∞の時は1/l=0, l=0 の時は 1/l=+∞と考える)』

というものだったと思います。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QR^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
から先に進めません。
λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=Σ[n=1..∞]λ(∪[k=n..∞]A_k)なんて変形もできませんよね。
どのすれば=0にたどり着けますでしょうか?

(イ)について
答えは多分Yesだと思います。
Lebesgue可測集合はL:={E∈R^n;E⊂Uでinf{λ^*(U\E);Uは開集合}=0}の元の事ですよね。
なのでLebesgue測度は制限写像λ^*|L:=μと書けますよね。
それで∩[n=1..∞]∪[k=n..∞]A_k∈Lを示せば(ア)からLebesgue測度0が言えると思います。
今,(ア)より
inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}=0
と分かったので
0=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
=inf{Σ[i=1..∞]|I_i\Bd(I_i)∪Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(但しBd(I_i)は境界点)
=inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(∵||の定義)
からinf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となればI_i\Bd(I_i)は開集合になので
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}=0が言え,
∩[n=1..∞]∪[k=n..∞]A_k∈Lも言え,
μ(∩[n=1..∞]∪[k=n..∞]A_k)=λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=0(∵(ア))
となりおしまいなのですが

inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
から
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となる事がどうしても言えません。どうすれば言えますでしょうか?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=...続きを読む

Aベストアンサー

数列の部分和の定義と∩∪の定義からすぐだと思いますよ。
面倒なので外測度を単にλで表します。
仮定はΣλ(A_k)<∞です。これは級数の収束の定義から部分和
S_N=Σ[k=1,..,N] λ(A_k)
がコーシー列、よって
任意のε>0に対してNが存在し、n≧Nならば
Σ[k=n,...,∞] λ(A_k)<ε
ということを言っているわけです。
問題は、∩[n=1,..,∞]∪[k=n,..∞] A_kの外測度を求めることですが上の事実を利用できることが分かると思います。上で示したNをとってきます。このとき
λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)≦Σ[k=N,..,∞] λ(A_k)<ε
となるのはほとんど明らかですね。任意のεに対してもっと大きい番号N'をとっても問題の集合はN'から先の和集合に含まれるわけですからこれは結局λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)=0でなければならないことを示しています。

Q(再投稿)R^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義されないという状況に陥ってしまいます(∵必ずしもSはn次元区間塊とは限らない)。
するとλ(S)≧λ(S∩E)+λ(S∩E^c)という不等式は意味を成さなくなります。
従って,AがLebesgue可測集合である事が示せなくなってしまいます。
Lebesgue可測集合の定義を勘違いしてますでしょうか?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義され...続きを読む

Aベストアンサー

とりあえず教科書を読む.
定義が分かってなければ何もできない.

>Lebesgue可測集合とはλをLebesgue外測度とする時,
>{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。

こんなこと本当に書いてある?なんか読み落としているとか
説明の途中の何かだとか,勝手に創作してるとか?

>Lebesgue可測集合の定義を勘違いしてますでしょうか?
してる.
だって,それだったら「円」ですらルベーク可測じゃなくなる.

QΣ[n=1..∞]√n/(1+nx)^2は[a,∞)(∀a>0)で一様収束するが(0,∞)では一様収束しない事を示せ

こんにちは。

[問]Σ[n=1..∞]√n/(1+nx)^2は[a,∞)(∀a>0)で一様収束するが(0,∞)では一様収束しない事を示せ。
[証]
(i) a≦x<1の時
0<∀ε∈R,∃n_1∈N;(∀x,n_1<n⇒|Σ[k=1..n]√k/(1+kx)^2-L|<ε)
(但し,L:=Σ[n=1..∞]√n/(1+nx)^2)
(ii) x=1の時
0<∀ε∈R,∃n_2∈N;(∀x,n_2<n⇒|Σ[k=1..n]√k/(1+kx)^2-L|<ε)
(iii) x>1の時
0<∀ε∈R,∃n_3∈N;(∀x,n_3<n⇒|Σ[k=1..n]√k/(1+kx)^2-L|<ε)
を示し,n_0:=max{n_1,n_2,n_3}と採れば
0<∀ε∈R,∀x∈[a,∞),n_0<n⇒|Σ[k=1..n]√k/(1+kx)^2-L|<ε
が言えるのですがn_1,n_2,n_3をどのように採ればいいのかわかりません。
どのように採れますでしょうか?

あと、後半については0<∀ε∈R,xを十分小さく取れば∀n∈N⇒Σ[k=1..n]√k/(1+kx)^2>ε
を言えばいいのだと思いますがxをどのように小さく採ればいいのでしょうか?

こんにちは。

[問]Σ[n=1..∞]√n/(1+nx)^2は[a,∞)(∀a>0)で一様収束するが(0,∞)では一様収束しない事を示せ。
[証]
(i) a≦x<1の時
0<∀ε∈R,∃n_1∈N;(∀x,n_1<n⇒|Σ[k=1..n]√k/(1+kx)^2-L|<ε)
(但し,L:=Σ[n=1..∞]√n/(1+nx)^2)
(ii) x=1の時
0<∀ε∈R,∃n_2∈N;(∀x,n_2<n⇒|Σ[k=1..n]√k/(1+kx)^2-L|<ε)
(iii) x>1の時
0<∀ε∈R,∃n_3∈N;(∀x,n_3<n⇒|Σ[k=1..n]√k/(1+kx)^2-L|<ε)
を示し,n_0:=max{n_1,n_2,n_3}と採れば
0<∀ε∈R,∀x∈[a,∞),n_0<n⇒|Σ[k=1..n]√k/(1+kx)^2-L|<ε
が言えるのですがn_1,n_2,n_3をどのように採れ...続きを読む

Aベストアンサー

こんばんは。#1さんが指摘されていらっしゃるように、質問者さんの回答は定義を書いているだけです。この方針で回答を導くのは無理だと思います。

[a,∞)で一様収束すること

任意のx∈[a,∞)に対して

(1+nx)^2≧(1+na)^2
      =1+2na+n^2a^2
      ≧n^2a^2

であるから、

Σ[n=1…∞](√n)/(1+nx)^2≦Σ[n=1…∞](√n)/(na)^2
                 ≦1/a^2Σ[n=1…∞](√n)/n^2
                 =1/a^2Σ[n=1…∞]1/n^(3/2)

Σ[n=1…∞]1/n^(3/2)は収束するから、Weierstrassの優級数の定理よりΣ[n=1…∞](√n)/(1+nx)^2は一様収束する。


(0,∞)で一様収束しないこと

一様収束すると仮定する。十分小さい任意のε>0に対して、適当な番号N>0が存在する。
N<nに対して、x=1/(2n)とすると

Σ[k=n+1…2n](√k)/(1+k・1/(2n))^2≧Σ[k=n+1…2n](√k)/(1+2n・1/(2n))^2
                      ≧n×(√(n+1))/4
                      >ε

となって矛盾となる。
したがって、Σ[n=1…∞](√n)/(1+nx)^2は(0,∞)で一様収束しない。


※一般的に関数列の一様収束性を定義に基づいて示すことは困難です。そのため、Weierstrassの優級数の定理等を用いて示すのが常道です。(0,∞)で一様収束しないことを示すのにはCauchy列の条件を使っています。
質問者さんがしっかり勉強してくれることを望みます。

こんばんは。#1さんが指摘されていらっしゃるように、質問者さんの回答は定義を書いているだけです。この方針で回答を導くのは無理だと思います。

[a,∞)で一様収束すること

任意のx∈[a,∞)に対して

(1+nx)^2≧(1+na)^2
      =1+2na+n^2a^2
      ≧n^2a^2

であるから、

Σ[n=1…∞](√n)/(1+nx)^2≦Σ[n=1…∞](√n)/(na)^2
                 ≦1/a^2Σ[n=1…∞](√n)/n^2
                 =1/a^2Σ[n=1…∞]1/n^(3/2)

Σ[n=1…∞]1/n^(3/2)は収束するから、Weier...続きを読む

QΣ[k=1..∞]1/k^(1+x)が任意のa>0に対して[a,∞)で一様収束するが(0,∞)では一様収束しない

こんにちは。

[問]Σ[k=1..∞]1/k^(1+x)が任意のa>0に対して[a,∞)で一様収束するが(0,∞)では
一様収束しない事を証明せよ。

が示せません。

一様収束の定義は
0<∀ε∈R,∃L∈N;(L<n,x∈[a,∞)⇒|Σ[k=1..∞]1/k^(1+x)-Σ[k=1..n]1/k^(1+x)|≦ε)
です。


"p>1の時Σ[n=1..∞]1/n^pは収束,p<1の時発散"より
0<b<cに於いてΣ[k=1..n]1/k^(1+c)<Σ[k=1..n]1/k^(1+b)だから
Σ[k=1..∞]1/k^(1+c)<Σ[k=1..∞]1/k^(1+b)

とまで分かったのですがこれからどのようにして証明して分かりません。
どうぞご教示ください。

Aベストアンサー

こんばんは。♯1さんが指摘しているようにワイエルストラスの優級数の定理と一様収束の別の定義

0<∀ε∈R,∃L∈N;(L<m<n,x∈[a,∞)⇒|Σ[k=m+1..n]1/k^(1+x)|≦ε)

はご存知ですか?この事柄を使えば

(1)[a,∞) で一様収束すること
∀x∈[a,∞) に対して 1/k^{1+x}≦1/k^{1+a} かつ
Σ[k=1…∞]1/k^{1+a} は収束するからワイエルストラスの優級数の定理より Σ[k=1…∞]1/k^{1+x} は[a,∞) で一様収束する。

(2)(0,∞) で一様収束しないこと
(0,∞) で一様収束すると仮定する。∀ε>0 に対して十分大なる自然数Nが存在するが、xとしてN<n なる任意のnに対して

x < (log(n/ε)/log2n)-1

となるようにxを選べば

Σ[k=n…2n]1/k^{1+x} > n/(2n)^{1+x} > ε

となり矛盾となる。したがって (0,∞) で一様収束しない。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報