
No.1ベストアンサー
- 回答日時:
f(x) = x(π−x) (0≦x≦π) (でいいのかな・・!?)
これだけから
1/(1^3)−1/(3^3)+1/(5^3)−1/(7^3)+・・・=π^3/32
に辿り着かせるためには可成り工夫がいる様に思う・・!
当方なりに考えてみた・・!
f(x) = x(π−x) (0≦x≦π)だと半周期分(・・!?)の様にしか見えないため、
もう半周期分を付け足して考え
f(x) = x(π+x) (-π≦x≦0)として
f(x)が(-π≦x≦πで)奇関数となるように取って、この区間でフーリエ級数展開してみる・・!
フーリエ級数を
f(x)~a0/2 +Σancos(nx)+bnsin(nx)として
手続きに従って係数a0 , an , bnを求めると
a0 = 0
an = 0
bn = -4/π・{1/n^3・(-1)^n-1/n^3}
よって
x(π−x)~-4/π・Σ[n=1~∞]{1/n^3・(-1)^n-1/n^3}sin(nx)
=(8/π)・Σ[k=1~∞]{(-1)^(k-1)/(2k-1)^3・sin(2k-1)x}
x = π/2とすれば
π^2/4 = (8/π)・Σ[k=1~∞]{(-1)/(2k-1)^3}
∴Σ[k=1~∞]{1/(2k-1)^3} =π^3/32
No.2
- 回答日時:
ANo.1・・!
ちと記入漏れがあり訂正・・!
(-1)の冖乗を書き忘れた!
x(π-x)~-4/π・Σ[n=1~∞]{1/n^3・(-1)^n-1/n^3}sin(nx)
=(8/π)・Σ[k=1~∞]{(-1)^(k-1)/(2k-1)^3・sin(2k-1)x}
x = π/2とすれば
π^2/4 = (8/π)・Σ[k=1~∞]{(-1)^(k-1)/(2k-1)^3}
∴Σ[k=1~∞]{(-1)^(k-1)/(2k-1)^3} =π^3/32
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
今、見られている記事はコレ!
-
弁護士が解説!あなたの声を行政に届ける「パブリックコメント」制度のすべて
社会に対する意見や不満、疑問。それを発信する場所は、SNSやブログ、そしてニュースサイトのコメント欄など多岐にわたる。教えて!gooでも「ヤフコメ民について」というタイトルのトピックがあり、この投稿の通り、...
-
弁護士が語る「合法と違法を分けるオンラインカジノのシンプルな線引き」
「お金を賭けたら違法です」ーーこう答えたのは富士見坂法律事務所の井上義之弁護士。オンラインカジノが違法となるかどうかの基準は、このように非常にシンプルである。しかし2025年にはいって、違法賭博事件が相次...
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
-
なぜ批判コメントをするの?その心理と向き合い方をカウンセラーにきいた!
今や生活に必要不可欠となったインターネット。手軽に情報を得られるだけでなく、ネットを介したコミュニケーションも一般的となった。それと同時に顕在化しているのが、他者に対する辛らつな意見だ。ネットニュース...
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
近似曲線の数式を手計算で出し...
-
Π←これは一体?
-
シグマの記号の読み方
-
Σの添え字について
-
Σ(・ω・ノ)ノ の顔文字の意味
-
Σk(k+1) k=1 式を教えて下さい ...
-
エクセルによる近似(回帰)直...
-
数列の問題!
-
Σが二重になっている式の偏微分...
-
Σの上が2n
-
数列anはa1=4,(an+1)-3an+2=0 (...
-
2重ΣΣのΣ記号は交換可能でしょ...
-
Σのk=2
-
Σの意味ってなんでしたっけ?
-
数列の和
-
分散共分散行列の逆行列の平方根
-
exp(x+y)=exp(x)exp(y)を和を計...
-
数学で答えを教えて欲しいので...
-
a1=1,an+1=an+3n-1 この条...
-
Σと∫って入れ替えできるんです...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報