
No.1ベストアンサー
- 回答日時:
f(x) = x(π−x) (0≦x≦π) (でいいのかな・・!?)
これだけから
1/(1^3)−1/(3^3)+1/(5^3)−1/(7^3)+・・・=π^3/32
に辿り着かせるためには可成り工夫がいる様に思う・・!
当方なりに考えてみた・・!
f(x) = x(π−x) (0≦x≦π)だと半周期分(・・!?)の様にしか見えないため、
もう半周期分を付け足して考え
f(x) = x(π+x) (-π≦x≦0)として
f(x)が(-π≦x≦πで)奇関数となるように取って、この区間でフーリエ級数展開してみる・・!
フーリエ級数を
f(x)~a0/2 +Σancos(nx)+bnsin(nx)として
手続きに従って係数a0 , an , bnを求めると
a0 = 0
an = 0
bn = -4/π・{1/n^3・(-1)^n-1/n^3}
よって
x(π−x)~-4/π・Σ[n=1~∞]{1/n^3・(-1)^n-1/n^3}sin(nx)
=(8/π)・Σ[k=1~∞]{(-1)^(k-1)/(2k-1)^3・sin(2k-1)x}
x = π/2とすれば
π^2/4 = (8/π)・Σ[k=1~∞]{(-1)/(2k-1)^3}
∴Σ[k=1~∞]{1/(2k-1)^3} =π^3/32
No.2
- 回答日時:
ANo.1・・!
ちと記入漏れがあり訂正・・!
(-1)の冖乗を書き忘れた!
x(π-x)~-4/π・Σ[n=1~∞]{1/n^3・(-1)^n-1/n^3}sin(nx)
=(8/π)・Σ[k=1~∞]{(-1)^(k-1)/(2k-1)^3・sin(2k-1)x}
x = π/2とすれば
π^2/4 = (8/π)・Σ[k=1~∞]{(-1)^(k-1)/(2k-1)^3}
∴Σ[k=1~∞]{(-1)^(k-1)/(2k-1)^3} =π^3/32
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 フーリエ級数展開の問題 1 2022/11/04 10:57
- 工学 以前、線形代数からフーリエ級数展開を導く上で 式v=(v, e1)e1+(v, e2)e2+…+(v 6 2022/06/29 17:24
- 物理学 複素フーリエ級数展開からフーリエ変換 1 2023/05/12 16:15
- 数学 離散フーリエ逆変換が周波数分割数をNにできる理由について 4 2022/09/18 12:56
- 物理学 たとえばプリズムに太陽光を当てると異なる 色(すなわち異なる波長) の光に分解される. やはり, フ 2 2022/07/18 11:45
- 物理学 フーリエ級数展開をExcelのFFTでシミュレートする 5 2023/07/03 22:02
- 数学 高一数学 数と式 画像あり (2)までは出来たのですが、 (3)の下線部の文字式の展開が理解できませ 2 2023/08/19 15:48
- 物理学 フーリエ変換の振幅について 1 2022/09/04 08:56
- 数学 素朴な疑問について 級数展開で、たとえば三角関数が、 a0+a1x+a2x^2+a3x^3+... 8 2022/03/28 16:27
- 数学 フーリエ変換後の負の周波数成分の扱いについて 4 2022/09/03 10:18
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報