No.3ベストアンサー
- 回答日時:
高校生ですか?
大学生なら、zを消去して、偏微分を使ってヘッシアンから求めることができるんだけど…
だめなのかな。
そんなら、まずzを消去して、できたx、yの方程式をxの関数とみて、平方完成して、そのときの最小値(yの関数)をもう一度平方完成すれば求まりますよ~
この回答への補足
高校生です。
実はこの問題は、ある大学(理系のいわゆる難関大学ではない)の入試問題(過去問)の第1問目なので、そんなに難しい問題ではないのだろうとたかをくくってときはじめたのですが、いくら考えてもわからなくて困っています。
ありがとうございます。おっしゃるようにやってみたらなんとか答えにたどり着いたようです。
最小値は6/11になりました。
その時、
x=6/11
y=3/11
z=2/11
になりました。
私にとって第1問目のこの問題は難しすぎて、パニックになってきっと不合格になっただろうと想像して落ち込んでいます。
ともかくありがとうございました。
No.9
- 回答日時:
#1です。
なるほど、そういう風にすれば、相加相乗を使って解けるんですね。#1に書いたのは、余計な事でしたね。すいませんでした。コーシーシュワルツの不等式とは
(a^2+b^2)(X^2+Y^2)≧(aX+bY)^2 (等号成立はa:b=X:Y)
(a^2+b^2+c^2)(X^2+Y^2+Z^2)≧(aX+bY+cZ)^2 (等号成立は a:b:c=X:Y:Z)
などの不等式です。こんな風に書くと難しいかもしれませんが、p,qをベクトル(矢印は省略)としたら、
|p|^2|q|^2≧(p・q)^2 (等号成立はp//q)
という式です。(p・qは内積)
(p・q)^2=|p|^2|q|^2(cosθ)^2ですから、上の式が成り立つのは分かるでしょう。
p=(a,b),q=(X,Y)とすれば、上の不等式が、
p=(a,b,c),q=(X,Y,Z)とすれば、下の不等式がでてきますよね。
ですので、p=(a,b,c,…),q=(X,Y,Z,…)といくら増やしても成り立ちます。
もし、p=(1,1,1)、q=(x,y,z)とすると、
(1^2+1^2+1^2)(x^2+y^2+z^2)≧(x*1+y*1+z*1)^2=1^2
より、(x^2+y^2+z^2)≧1/3
等号成立はx:y:z=1:1:1よりx=y=z=1/3
となるので、x^2+y^2+z^2の最小値は1/3と求める事ができます。
x^2+2y^2+3z^2の方は少し技が必要なんですが、
p=(1,1/√2,1/√3),q=(x,√2y,√3z)
とすると、#3さんへのお礼に書いてあるような答えが出てきます。
「コーシーシュワルツの不等式」についての詳しい解説をありがとうございました。
今の私にとって使いこなすのは難しそうですが、「なるほど!」と思うことはできました。
同じ問題に対していろいろな解法があることをあらためて感じることができました。
この場を借りてレスをいただいた全員の皆様に御礼申し上げます。
この質問を閉じようと思いますが、ポイントを差し上げるのに困りました。
皆様に20ptということにしたいのですが、それはできないみたいです。
すみませんが、根拠なく、えいや!!と適当に決めさせていただきます。
本当にありがとうございました。
No.8
- 回答日時:
>点と平面の距離
点と直線の場合とほぼ同じですね。(参考参照)
しかしながら、習っている方法でやるのが一番です。この方法は、計算は楽だと思いますが、記述がやっかいですから、平方完成する方がポピュラーですね。
参考URL:http://www.tanimura.org/v1/?title_id=22113&mode=d
No.6
- 回答日時:
>x^2+2y^2+3y^2=r^2 とおくと球がつぶれて、卵型みたいになるのでしょうか?
>よくわかりません。
そうなるとは思いますが、実際には、
√2y=Y
√3z=Z
の変換をすると良いと思います。
1 1
x+---Y+---Z=1 のとき x^2+Y^2+Z^2の最小値は?
√2 √3
という問いに置き換える事ができますので、
平面と原点との距離を求める公式を用いると、
1
---------
√1+(1/2)+(1/3)
ですが、問題はr^2の最小値を求めるので、上を2乗すると、平方根がとれます。
すると、6/11となります。
No3の方法は私は確認していませんが、一致しましたね。
ありがとうございます。
つぶれた球を考えるのでなく、球はつぶさないで平面を傾けて考えるわけですね。
正直に申し上げますと、3次元空間における平面の方程式とか、ましてやその平面と点との距離の公式についてわかっておりません。
ただ、xy平面での点(m,n)と直線 ax+by+c=0 の距離が
|am+bn+c|/√(a^2+b^2)
で与えられることとよく似ているので、おっしゃられることはなんとなく理解できた気になれます。
すらすらとこの回答ができる人にとってはいいでしょうけれど、やはり私にとってこの問題はかなりの難問でした。
ありがとうございました。
No.5
- 回答日時:
>x^2+y^2≧2xy
>は、x、yの正負に関係なく成立すると考えていいの
>ではないかと思いますがどうなんでしょうか
>(x-y)^2=x^2+y^2-2xy≧0 はx、yの正負に関
>係なく成立するので。
おっしゃられる通り,結果的に実際のところは,正負に関係なく成立します.
x^2+y^2≧2√(x^2y^2)=2√{(xy)^2}=2|xy|
と相加・相乗平均の関係を使っているので,
√{(変数)^2}=|変数|というものが出てきて,このサイトでは適当に書かれても結構ですが,答案では丁寧に書いて欲しいというただそれだけです.
この回答への補足
かさねてありがとうございます。
修正を加えてみたのですが、チェックをお願いできませんでしょうか。
よろしくお願いします。
相加平均相乗平均の関係から
x^2+y^2≧2|xy|
y^2+z^2≧2|yz|
z^2+x^2≧2|zx|
左辺右辺それぞれ加えて
2x^2+2y^2+2z^2≧2|xy|+2|yz|+2|zx|
したがって
x^2+y^2+z^2=(x+y+z)^2-(2xy+2yz+2zx)≧(x+y+z)^2-(2|xy|+2|yz|+2|zx|)≧(x+y+z)^2-2(x^2+y^2+z^2)
3(x^2+y^2+z^2)≧(x+y+z)^2=1
∴x^2+y^2+z^2≧1/3
No.4
- 回答日時:
ANo.3の変数を減らす方針が一番安全策だと思います.
ちなみに,
ANo.1のお礼に書かれているものについて言わせて頂きますと,
x+y+z=1という条件だけなので,x, y, zは正とは限りません.ですから,
>x^2+y^2≧2xy
>y^2+z^2≧2yz
>z^2+x^2≧2zx
は正しくなく,
x^2+y^2≧2|xy|
y^2+z^2≧2|yz|
z^2+x^2≧2|zx|
とする必要があると思います.
細かい所ですが,記述試験では減点対象になると思います.
√(変数)^2=|変数|
であることに注意して下さい.
この回答への補足
ご意見ありがとうございます。
相加平均相乗平均の関係で
x+y≧2√xy
とやる場合はx、yはともに正という条件が必要なのはわかりますが、
x^2+y^2≧2xy
は、x、yの正負に関係なく成立すると考えていいのではないかと思いますがどうなんでしょうか
(x-y)^2=x^2+y^2-2xy≧0 はx、yの正負に関係なく成立するので。
No.1
- 回答日時:
私なら、コーシー・シュワルツの不等式を使って解きますね。
(x^2+y^2+z^2の最小値の方も)ところで、x^2+y^2+z^2の場合、相加相乗の不等式から分かった、との事ですが、どのように解いたんでしょうか?
x^2+y^2+z^2≧3(xyz)^(2/3)
(等号成立はx=y=z=1/3)
であるから、x^2+y^2+z^2は、x=y=z=1/3の時に、最小値となる。
よって、最小値は(1/3)^2+(1/3)^2+(1/3)^2=1/3
なーんていう解き方は間違いだと思いますよ。
この回答への補足
x^2+y^2+z^2 の最小値は以下のようにやりました。よろしくお願いします。
相加平均相乗平均の関係から
x^2+y^2≧2xy
y^2+z^2≧2yz
z^2+x^2≧2zx
左辺右辺それぞれ加えて
2x^2+2y^2+2z^2≧2xy+2yz+2zx
したがって
x^2+y^2+z^2=(x+y+z)^2-(2xy+2yz+2zx)≧(x+y+z)^2-2(x^2+y^2+z^2)
3(x^2+y^2+z^2)≧(x+y+z)^2=1
∴x^2+y^2+z^2≧1/3 (等号成立はx=y=z=1/3)
「コーシー・シュワルツの不等式」についてなにも知らないのですが、この問題に適用できるのですか?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 数学トリック!間違ってるところを指摘してください。 「問題。sinx+2/sinxの最小値を求めよ。 3 2022/09/21 10:52
- 数学 正数a、bに対し次の関数の最大値、最小値(もしあれば)を求めよ (1)x ^a(1-x)^b (0≦ 2 2023/07/19 17:29
- 数学 条件付き極値問題といわれる問題です。ラグランジュの乗数法 について、質問したいことがあります。 条件 3 2023/05/15 21:38
- 統計学 統計学の問題です よろしくお願いします 回帰直線 次のデータから集計表を作成し,以下の問いに答えよ。 1 2023/01/31 18:55
- 統計学 統計学の問題です よろしくお願いします 回帰直線 次のデータから集計表を作成し,以下の問いに答えよ。 2 2023/01/31 23:36
- 数学 数学の公式の実践的な使い方を教えてくれるサイトや参考書はありますか? 例えば相加平均と相乗平均は最小 3 2023/06/28 20:24
- 数学 8 件の住宅について, 駅からの徒歩時間 (分) と賃料 (万円) を調べたところ, (徒歩時間, 1 2022/12/18 18:09
- 数学 ラグランジュの未定乗数法を用いる問題 3 2023/05/15 14:48
- 物理学 電気磁気測定の整流形電圧計の問題についてです。 写真の問題についてで、正弦波での実効値Ve、最大値V 2 2023/02/16 11:12
- 数学 8 件の住宅について, 駅からの徒歩時間 (分) と賃料 (万円) を調べたところ, (徒歩時間, 2 2022/12/18 20:26
このQ&Aを見た人はこんなQ&Aも見ています
-
好きな人を振り向かせるためにしたこと
大好きな人と会話のきっかけを少しでも作りたい、意識してもらいたい…! 振り向かせるためにどんなことをしたことがありますか?
-
一番最初にネットにつないだのはいつ?
ネットユーザーもいろんな世代が生まれていますが、始めて接続したときのワクワクは同じはず! 人生で一番最初にネットに接続したときの思い出を教えて下さい。
-
2024年に成し遂げたこと
今年も残すところわずか。 皆さんが今年達成したことを教えていただきたいです。 どんな小さなものでも構いません。
-
【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
「出身中学と出身高校が混ざったような校舎にいる夢を見る」「まぶたがピクピクしてるので鏡で確認しようとしたらピクピクが止まってしまう」など、 これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
-
【選手権お題その2】この漫画の2コマ目を考えてください
サッカーのワンシーンを切り取った1コマ目。果たして2コマ目にはどんな展開になるのか教えてください。
-
二次関数の難問です。 P=x^2+y^2+z^2-xy-yz-zx(0≦x≦1, 1≦y≦2, 2≦
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「黒歴史」教えて下さい
- ・2024年においていきたいもの
- ・我が家のお雑煮スタイル、教えて下さい
- ・店員も客も斜め上を行くデパートの福袋
- ・食べられるかと思ったけど…ダメでした
- ・【大喜利】【投稿~12/28】こんなおせち料理は嫌だ
- ・前回の年越しの瞬間、何してた?
- ・【お題】マッチョ習字
- ・モテ期を経験した方いらっしゃいますか?
- ・一番最初にネットにつないだのはいつ?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
高2の数学の対数関数です。 真...
-
一次関数のグラフ問題で、>や...
-
x2乗+y2乗=0はx=0である為の十...
-
6時間超え
-
電位係数を写真のようにおくと...
-
年代と年台・・・どちらが正し...
-
「無限の一つ前の数字は何?」...
-
「余年」の意味について教えて...
-
エクセルで(~以上,~以下)...
-
【数学】 lim x→a ↑これってど...
-
全員と同じグループを経験でき...
-
シグマの範囲が2nまでの関数で...
-
COUNTIF関数 ある範囲の数値で...
-
2重積分の変数変換の範囲につ...
-
高一数学二次関数 なぜx²-2xを...
-
dx/dy や∂x/∂y の読み方について
-
離れた列での最大値の求め方
-
絶対値のついた2つの不等式に...
-
3変数の場合の最小値の求め方‐...
-
方程式 e^x=x+1 の解
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
高2の数学の対数関数です。 真...
-
x2乗+y2乗=0はx=0である為の十...
-
数学について質問です。 |a+b...
-
数学 x=4 は x二乗=16でたる...
-
log10X<3 (10は底です) をとく...
-
一次関数のグラフ問題で、>や...
-
また写真が載せられません 連立...
-
定積分と不等式
-
「または」「かつ」の図示
-
理系国立大学に通っている人に...
-
2次式の最小値
-
数学II 次の不等式が表す領域を...
-
すみません、No.925795とNo.763...
-
(2)はx|x|<(3x+2)|3x+2|という...
-
0.125<0.5^x<1 この不等式の...
-
【 数学 数学A 】 〇 必要条件...
-
数学の問題で困っています。お...
-
不等式の種々の問題
-
魔法陣の答え教えて下さい。
-
不等式の証明、おねがいします!!
おすすめ情報