
数学の問題です。教えてください。
次の3つの条件を満たす2次関数f(x)および実数mを考える。
(i) 放物線y=f(x)は、放物線y=x^2を頂点が第4象限にくるように平行移動したものである。
(ii) 放物線y=f(x)は、点(1,-2)を通る。
(iii) 関数f(x)の最小値はmである。
このとき、次の各問いに答えよ。
(1) m=-3のとき、f(x)を求めよ。
(2) f(0)=0を満たすf(x)が存在するようなmの値を求めよ。
(3) f(0)≦3を満たすf(x)が存在するようなmの値の範囲を求めよ。
(4) 条件を満たす関数f(x)が2つ存在するようなmの値の範囲を求めよ。
No.1ベストアンサー
- 回答日時:
下に凸の放物線なので、頂点で最小値をとります。
よって、頂点のy座標はmです。頂点のx座標をnとします。
頂点が第4象限にあるので、n>0 , m<0
放物線y=f(x)は、放物線y=x^2を頂点が第4象限にくるように平行移動したものなので、
y=(x-n)²+m とおくことができます。f(x)=(x-n)²+m ……①
点(1,-2) を通るので、
-2=(1-n)²+m……②
(1) m=-3 を②に代入
-2=(1-n)²+(-3)
n²-2n=0
n(n-2)=0
n>0 より、
n=2
よって、①より、
f(x)=(x-2)²+(-3)
=x²-4x+1
(2) f(0)=0 なので、①より、
0=(0-n)²+m
n²+m=0
m=-n²……③
③を②に代入
-2=(1-n)²+(-n²)
2n=3
n=3/2
③に代入
m=-(3/2)²
=-9/4
(3) ①より、
f(0)=(0-n)²+m
=n²+m
f(0)≦3 より、
n²+m≦3……⓸
②より、
m=-2-(1-n)²
⓸に代入
n²+{-2-(1-n)²}≦3
2n≦6
n≦3……⑤
②より、
(1-n)²=-2-m
(n-1)²=-2-m……⑥
⑤より、
n-1≦2
0≦(n-1)²≦4
⑥を代入
0≦-2-m≦4
-4≦2+m≦0
-6≦m≦-2
(4) ⑥より、
-2-m≧0
-2≧m……⑦
このとき、
n-1=±√(-2-m)
n=1±√(-2-m)
n>0 より、 条件を満たす関数f(x)が2つ存在するということは、1+√(-2-m)>0 なので、
1-√(-2-m)>0
1>√(-2-m)
両辺とも正なので2乗して、
1>(-2-m)
m>-3……⑧
⑦、⑧より、求めるmの値の範囲は、
-3<m≦-2
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数学の問題です。 実数x、yが、...
-
2次関数
-
2:1正楕円とは何ですか?
-
放物線z= x^2 + y^2上の点(1,2,...
-
高校2次関数グラフ
-
放物線の上を滑らずに転がる円...
-
放物線y=x^2+a と円x^2+y^2=9に...
-
数学における「一般に」とは何...
-
半楕円とは何ですか?
-
楕円の書き方
-
一般常識【二次関数】
-
定規とコンパスで楕円を描く、...
-
添付画像の放物線はどんな式で...
-
数学です。この答えを教えてく...
-
楕円の共通部分の面積
-
関数と図形の融合問題
-
数学III 放物線の問題です 問題...
-
メール文章で直線の描き方について
-
有限アーベル群の構造定理
-
座標(x,y)間(=2点)の...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
2次関数
-
数学の問題です。 実数x、yが、...
-
2:1正楕円とは何ですか?
-
y=ax^2+bx+cのbは何を表してい...
-
楕円の焦点,中心を作図で求め...
-
【至急】困ってます! 【1】1、...
-
日常生活で放物線や双曲線の例...
-
添付画像の放物線はどんな式で...
-
【 数I 2次関数 】 問題 放物線...
-
放物線y=x^2+a と円x^2+y^2=9に...
-
数学の問題です
-
放物線y=2x² を平行移動した曲...
-
円柱をある角度で切断時の楕円...
-
至急!y=2X^2を変形(平方完成)...
-
aがすべての実数値をとって変化...
-
軌跡の「逆に」の必要性につい...
-
高校2次関数グラフ
-
楕円の書き方
-
グラフの平行移動の問題で y=2x...
-
楕円の分割
おすすめ情報