No.2ベストアンサー
- 回答日時:
(1)の方の仰る通りですが、もう少し分解してみます。
放物線のグラフは、二次方程式で表現することができます。
放物線を表す2次方程式の一般形は、y=ax^2+bx+c という形ですね。(x^2は、xの2乗のことです。読み替えてください。)
この放物線について、y=ax^2+bx+cという式で表現できる、としておきましょう。
a,b,cが明らかになれば、放物線の方程式を求めたことになります。
この放物線は、(-1.9)と(3.1)の2点を通るということですから、
y=9、x=-1、およびy=1、x=3を満たします。
なので、それぞれ代入して、
A: 9=a-b+c
B: 1=9a+3b+c
という二つの式が成り立っていることがわかります。(が、3つの未知数に対して2つの式なので、このままでは全ての値は分かりません。)
そこで、「X軸に接する」という部分を利用します。X軸は、y=0 という曲線(?!)の式です。
2以下の曲線y=f(x)とy=g(x)が接する時、その共有点は1つです。ですから、f(x)=g(x)を満たすようなxは一つだけ、ということができます。すなわち、f(x)-g(x)=0の解が1つ (→判別式D=0) となります。
今回は、y=ax^2+bx+cとy=0の共有点を考えるので、ax^2+bx+c=0について、判別式D=0となる条件を探します。D:b^2-4ac ですから、b^2-4ac=0と言えます。
したがって、
A: 9=a-b+c
B: 1=9a+3b+c
C: b^2-4ac=0
この3式を満たすようなa,b,cを求め、y=ax^2+bx+cに代入すれば、放物線の式が求められます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 【 数I 2次関数 】 問題 放物線y=x²-4x+3を,y軸方向に平行移動 して原点を通るようにし 4 2022/06/26 22:03
- 数学 微分について教えてください 放物線y=x^2のx=1における微分係数を定義に従って求め、その点におけ 5 2023/04/16 15:38
- 数学 2次関数y=ax^2のグラフは点A(4,2)を通っている。y軸上に点BをAB=OB(Oは原点)となる 1 2022/04/08 00:05
- 数学 【 数I 2次関数の対称移動 】 問題 ※写真 疑問 放物線y=2x²+xをy軸に関して対称移動 す 3 2022/07/02 23:28
- 数学 第4問 座標平面上に3点 A(1, 1),B(1, 5), C(7, 3) を頂点とするABCがある 2 2022/10/01 14:53
- 数学 放物線と円の接点についてです。96(1)の、[1]で重解だと接することがよくわかりません。 xの2次 4 2022/12/24 17:59
- 数学 二次関数の問題です。放物線がx軸と異なる2点A、Bで交わるときのABの求め方がなぜそうなるのかわかり 3 2022/04/09 07:13
- 数学 数学 2次関数 1 2023/05/10 21:45
- 数学 高校数学の問題です。 aを定数とする。放物線y=x^2+aと関数y=4|x-1|-3のグラフの共有点 3 2022/05/09 08:59
- 大学・短大 【線形代数について質問です】 点(4.3)を点(3.4)に写す1次変換のうち、原点を通る直線について 1 2023/06/11 14:29
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】看板の文字を埋めてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・【穴埋めお題】恐竜の新説
- ・我がまちの「給食」自慢を聞かせてっ!
- ・冬の健康法を教えて!
- ・一番好きな「クリスマスソング」は?
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
線形代数の二次曲線の問題について
-
楕円の書き方
-
2:1正楕円とは何ですか?
-
楕円の焦点,中心を作図で求め...
-
数学の変数にはなぜ「x」が使わ...
-
【 数I 2次関数の対称移動 】 ...
-
関数
-
【至急】困ってます! 【1】1、...
-
数3 放物線 y^2=4pxという式を...
-
添付画像の放物線はどんな式で...
-
双曲線の焦点を求める時はなぜ√...
-
高校数学です 考え方も含め、教...
-
この問題は「円の中心の軌跡を...
-
数学の問題です。 実数x、yが、...
-
ベクトルのなす角
-
放物線を回転させるとどうなり...
-
数学における「一般に」とは何...
-
放物線の対称移動の問題の答え...
-
放物線y=2x² を平行移動した曲...
-
y=ax^2+bx+cのbは何を表してい...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
楕円の書き方
-
楕円の焦点,中心を作図で求め...
-
2:1正楕円とは何ですか?
-
至急!y=2X^2を変形(平方完成)...
-
y=ax^2+bx+cのbは何を表してい...
-
双曲線の焦点を求める時はなぜ√...
-
数学の問題です。 実数x、yが、...
-
tの値が変化するとき、放物線y=...
-
放物線y=x^2-3xと y=0,y=4 で囲...
-
噴水はなぜ放物線をえがくので...
-
日常生活で放物線や双曲線の例...
-
添付画像の放物線はどんな式で...
-
放物線y=2x² を平行移動した曲...
-
数3 放物線 y^2=4pxという式を...
-
【 数I 2次関数 】 問題 放物線...
-
2次関数
-
数学の変数にはなぜ「x」が使わ...
-
数学における「一般に」とは何...
-
二次関数の良さ
-
【至急】困ってます! 【1】1、...
おすすめ情報