
N段の階段がある(1≦N≦100)
ただし、一回の動作につき階段はA段またはB段ずつ登るとする
(1≦A<B≦5)
この時、N段目を除き、一度も登ることのない段はいくつあるか
(N、A、Bは自然数)
例)N=15 A=3 B=5のとき、登らない段は
1,2,4,7の合計4段
という問題です。
i段目が登れるかどうかというのは、以下のいずれかを満たす時かと思ったのですが、違うとのこと、なぜでしょうか?
①i mod A = 0
②i mod B = 0
③(i mod (A + B)) mod A = 0
④(i mod (A + B)) mod B = 0
A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
A=3
B=5
登れる=〇
登れない=×
とすると
2×3+(-1)×5=1…×
4×3+(-2)×5=2…×
1×3+( 0)×5=3…〇
3×3+(-1)×5=4…×
0×3+( 1)×5=5…〇
2×3+( 0)×5=6…〇
4×3+(-1)×5=7…×
1×3+( 1)×5=8…〇
3×3+( 0)×5=9…〇
0×3+( 2)×5=10…〇
2×3+( 1)×5=11…〇
4×3+( 0)×5=12…〇
1×3+( 2)×5=13…〇
3×3+( 1)×5=14…〇
0×3+( 3)×5=15…〇
2×3+( 2)×5=16…〇
4×3+( 1)×5=17…〇
17段目には登れるのに
①17mod3=2≠0
②17mod5=2≠0
③(17mod(3+5))mod3=1≠0
④(17mod(3+5))mod5=1≠0
だからi=17はどれも満たしていないので違います
①imodA=0
②imodB=0
③(i≧A+B)&(imod(GCD(A,B))=0)
と
すれば
A=3
B=5
の場合は
3と5の最大公約数は1だから
すべてのiに対してimod(GCD(3,5))=imod1=0だから
すべてのi≧8に対してi段目は登れる
No.1
- 回答日時:
整数xと自然数yについて、x mod y と書いた値は、通常0以上y未満の整数だからです(数学記号ではなくて、計算機の剰余を取る演算ですよね?)。
A=3,B=5, N=27, i=26とします。
2x3+4x5=26 だから、26段目には登れます。
i mod (A+B)=26 mod 8=2 ですので、
1. 26 mod 3=2
2. 26 mod 5=1
3. (26 mod 8) mod 3=2
4. (26 mod 8) mod 5=2
だから、i=26はどれも満たしません。
なお、26 mod 8=10 とできれば、10 mod 5=0でOKです。こういう場合をきちんと表現できてないからダメなのです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
今、見られている記事はコレ!
-
弁護士が解説!あなたの声を行政に届ける「パブリックコメント」制度のすべて
社会に対する意見や不満、疑問。それを発信する場所は、SNSやブログ、そしてニュースサイトのコメント欄など多岐にわたる。教えて!gooでも「ヤフコメ民について」というタイトルのトピックがあり、この投稿の通り、...
-
弁護士が語る「合法と違法を分けるオンラインカジノのシンプルな線引き」
「お金を賭けたら違法です」ーーこう答えたのは富士見坂法律事務所の井上義之弁護士。オンラインカジノが違法となるかどうかの基準は、このように非常にシンプルである。しかし2025年にはいって、違法賭博事件が相次...
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
-
なぜ批判コメントをするの?その心理と向き合い方をカウンセラーにきいた!
今や生活に必要不可欠となったインターネット。手軽に情報を得られるだけでなく、ネットを介したコミュニケーションも一般的となった。それと同時に顕在化しているのが、他者に対する辛らつな意見だ。ネットニュース...
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
【遊びのピタゴラスイッチはな...
-
lim[x→+∞](x^n/e^x)=0 の証明
-
至上最難問の数学がとけた
-
大学の記述入試で外積は使えま...
-
AとBはn次正方行列とする。 積A...
-
直角三角形じゃないのに三平方...
-
x^100を(x+1)^2で割ったときの...
-
「ax+by=1を満たす整数x,yが存...
-
パップスギュルダンの定理について
-
実数の整列化について
-
modを使用した平方根の求め方
-
ほうべき(方巾)の定理について
-
複素幾何の予備知識
-
コーシーの積分定理 複素積分
-
微分形式,微分幾何学の参考書
-
合同式の変形
-
4.6.8で割るとあまりはそれぞれ...
-
「メネラウスの定理」、学校で...
-
大学数学 解答
-
ピタゴラス数について。
おすすめ情報