お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 行列について 2 2023/01/19 21:47
- 数学 線形代数 正則 階数 3 2023/03/22 07:52
- 数学 Cはn次正方行列とする。Cが正則行列だから、 AB=C が成り立つ時、Aの階数はnである。 上記が成 1 2022/04/23 22:07
- 数学 直交行列 1 2023/01/22 22:37
- 数学 行列の問題が分かりません。 3次正則行列Aの列ベクトル分割をA=(a1 a2 a3)とおくとき,次を 4 2022/06/23 08:34
- 数学 正則行列を基本行列の積に表せという問題は答えは1通りでは無いですよね? 2 2022/05/31 12:25
- 数学 対角化 1 2023/01/22 17:46
- 数学 直交行列について 1 2023/01/22 15:07
- 高校 行列のかけ算 2 2022/06/24 17:12
- 数学 行列の積では、 (A+B)²=A²+2AB+B² や、 (A+B)(A-B)=A²-B² が、毎回成 2 2022/04/18 10:03
このQ&Aを見た人はこんなQ&Aも見ています
-
10代と話して驚いたこと
先日10代の知り合いと話した際、フロッピーディスクの実物を見たことがない、と言われて驚きました。今後もこういうことが増えてくるのかと思うと不思議な気持ちです。
-
家・車以外で、人生で一番奮発した買い物
どんなものにお金をかけるかは人それぞれの価値観ですが、 誰もが一度は清水の舞台から飛び降りる覚悟で、ちょっと贅沢な買い物をしたことがあるはず。
-
土曜の昼、学校帰りの昼メシの思い出
週休2日が当たり前の今では懐かしい思い出ですが、昔は土曜日も午前中まで学校や会社がある「半ドン」で、いつもよりちょっと早く家に帰って食べる昼ご飯が、なんだかちょっと特別に感じたものです。
-
ちょっと先の未来クイズ第5問
日本漢字能力検定協会が主催し、12月12日に発表される、2024年の「今年の漢字」に選ばれる漢字一文字は何でしょう?
-
【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
【お題】 ・このサンタクロースは偽物だと気付いた理由とは?
-
線形代数の問題
数学
-
rankに関する証明問題です。
数学
-
Aはn次正方行列とする。零行列ではない行列Bが存在して、AB=0またはBA=0が成立するという。この
数学
-
-
4
2つのベクトル→a=(2.1.-3)と→b=(1.-2.1)の両方に垂直な単位ベクトルを求めなさい。
数学
-
5
行列の性質に、二つの行列A,Bが正則なら (AB)^-1=B^-1A^-1 が成り立ちますが、逆にA
数学
-
6
正則行列×正則行列は正則になりますか?
数学
-
7
eのlog2乗がなんで2になるのですか? 明日テストなので教えてください
数学
-
8
一方が正則で、一方は正則でないの証明方法について Aはn次正方行列で、ある自然数mに対してA^m=E
数学
-
9
Aが2次正方行列とする。 (1)Aが正則であるならば、det(A)≠0である。(2)det(A)≠0
その他(教育・科学・学問)
-
10
AとBは同じサイズの正方行列とする。A+BとA-Bが正則行列なら (A B B A)は正則行列である
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~12/2】 国民的アニメ『サザエさん』が打ち切りになった理由を教えてください
- ・ちょっと先の未来クイズ第5問
- ・【お題】ヒーローの謝罪会見
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
∠A=90°,AB=4,AC=3の直角三角...
-
【遊びのピタゴラスイッチはな...
-
aは自然数とする。a+5は4の倍...
-
lim[x→+∞](x^n/e^x)=0 の証明
-
相似比の答え方・・・
-
大学の記述入試で外積は使えま...
-
至上最難問の数学がとけた
-
ファルコンの定理は解かれまし...
-
直角三角形じゃないのに三平方...
-
ほうべき(方巾)の定理について
-
合同式と倍数
-
可換群で同型,や非同型の判定の...
-
等号・不等号に関する定理の名...
-
方べきの定理について教えてく...
-
高校の数学です。
-
△ABCの∠Aの2等分線と辺BCとの交...
-
4.6.8で割るとあまりはそれぞれ...
-
中学2年図形の証明についての質...
-
x^100を(x+1)^2で割ったときの...
-
拡張ユークリッド互除法による...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
lim[x→+∞](x^n/e^x)=0 の証明
-
大学の記述入試で外積は使えま...
-
至上最難問の数学がとけた
-
ほうべき(方巾)の定理について
-
【遊びのピタゴラスイッチはな...
-
直角三角形じゃないのに三平方...
-
至急です! 数学で証明について...
-
相似比の答え方・・・
-
【線形代数】基底、dimVの求め方
-
パップスギュルダンの定理について
-
定理と法則の違い
-
二次合同式の解き方
-
ファルコンの定理は解かれまし...
-
△ABCの∠Aの2等分線と辺BCとの交...
-
「有限個の素イデアルしか持た...
-
実数の整列化について
-
高校の数学です。
-
オイラーの多面体定理の拡張
-
留数定理とコーシーの積分公式...
-
中学2年図形の証明についての質...
おすすめ情報