一方が正則で、一方は正則でないの証明方法について
Aはn次正方行列で、ある自然数mに対してA^m=Enであるとする。以下のことを示せ。
(1)Aは正則で、A^(-1)=A^(m-1)
(2)En-Aまたは(E+A+...+A^{k-1})のうち一方は正則でない。
(1)は解けたのですが(2)がどうやって証明すればいいかわからないです。
自分の解答はこれであっていますか?
ともに正則でないを示すために、背理法を使おうと考えました。
そこで、ともに正則でないの否定の「ともに正則である」と仮定し、矛盾を示せば、
ともに正則でないが示すことができ、
さらに、
ともに正則であるが偽であることも示せますよね?
よって下のような解答になりました
(En-A)(En+A+...+A^{m-1}) = 0
このとき
(En-A)、(En+A+...+A^{m-1}) ともに正則であると仮定する。
(En-A)の逆行列B
(En+A+...+A^{m-1}) の逆行列をCとして、
両辺に左からCBを掛けると
En=0となって矛盾。
よって、
(En-A)と(En+A+...+A^{m-1}) が同時に正則になることはありえないので、
したがって、どちらか一方が正則で、もう一方は正則でない。
下図をイメージとして考えました。
A B
正則でない 正則でない ・・・偽
正則である 正則でない
正則でない 正則である
正則である 正則である ・・・偽
No.1ベストアンサー
- 回答日時:
この問題の3ページくらい前のページに
det(AB)=detA*detB って定理が証明されていませんでしたか?
また、7ページくらい前のページに、Aが正則である⇔detA≠0 って証明されていますよね。
これらを使ってよければ簡単ですよね。
さてところで、
・En-Aまたは(E+A+...+A^{k-1})のうち一方は正則でない。 という主張と、
・どちらか一方が正則で、もう一方は正則でない。 という主張は異なっていますね。
前者は、「両方とも正則でない」ケースを許容していますよ。
ーー
実際、帰謬法(背理法)の仮定は、「ともに正則である」ですから、
これが否定されたら「「ともに正則」ではない」=「少なくとも一方は非正則」ですね。
ptwmjaさんの回答は大筋ではあっていますが着地に失敗しています。
誤「したがって、どちらか一方が正則で、もう一方は正則でない。」
正「したがって、どちらか一方は正則でない」
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
カンパ〜イ!←最初の1杯目、なに頼む?
飲み会で最初に頼む1杯、自由に頼むとしたら何を頼みますか? 最初はビールという縛りは無しにして、好きなものを飲むとしたら何を飲みたいですか。
-
家・車以外で、人生で一番奮発した買い物
どんなものにお金をかけるかは人それぞれの価値観ですが、 誰もが一度は清水の舞台から飛び降りる覚悟で、ちょっと贅沢な買い物をしたことがあるはず。
-
【お題】引っかけ問題(締め切り10月27日(日)23時)
【大喜利】 「日本で一番高い山は富士山……ですが!」から始まった、それは当てられるわけ無いだろ!と思ったクイズの問題
-
自分のセンスや笑いの好みに影響を受けた作品を教えて
子どもの頃に読んだ漫画などが その後の笑いの好みや自分自身のユーモアのセンスに影響することがあると思いますが、 「この作品に影響受けてるな~!」というものがあれば教えてください。
-
好きな「お肉」は?
牛肉、豚肉、鶏肉、ラム肉、クマやシカの狩猟肉……。 いろ〜んな肉が食べられるようになりましたよね。 あなたがこれまで食べて「これはうまい!」とか「なんじゃこりゃ!」と好きになったお肉を教えてください。
-
AとBはn次正方行列とする。 積ABが正則ならばAとBはともに正則であることをしめせ。 教えてくださ
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数学の証明問題で、「証明終了」...
-
数学の「証明」のときなどの接...
-
素数の性質
-
夫が亡くなった後の義理家族と...
-
喪中はがきについて~娘の夫が...
-
47歳、母親の再婚を子供の立場...
-
中学校の2年生に仮定と結論を...
-
無理数って二乗しても有理数に...
-
婿養子です、妻と離婚して妻の...
-
背理法の問題です
-
先日、主人&姑に長男嫁として...
-
3,4,7,8を使って10を作る
-
(4^n)-1が3の倍数であることの...
-
中点連結定理の証明
-
直角三角形の性質
-
分配法則の証明って?
-
「・・・のとき」という言葉の...
-
数学的帰納法を使えないとき
-
123456789!!!
-
配偶者と死別後、再婚したら、...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
素数の積に1を加算すると素数で...
-
素数の性質
-
数学の「証明」のときなどの接...
-
数学の証明問題で、「証明終了」...
-
証明終了の記号。
-
(4^n)-1が3の倍数であることの...
-
3,4,7,8を使って10を作る
-
よって・ゆえに・したがって・∴...
-
親の再婚相手との問題です。私...
-
「証明証」と「証明書」はどう...
-
47歳、母親の再婚を子供の立場...
-
正解が一つとは限らない数学の...
-
兄弟の子どもの養子縁組は可能...
-
婿養子です、妻と離婚して妻の...
-
夫が亡くなった後の義理家族と...
-
婿養子に入ったのに出て行けと...
-
喪中はがきについて~娘の夫が...
-
無理数って二乗しても有理数に...
-
実息とは?
-
直角三角形の性質
おすすめ情報