A 回答 (4件)
- 最新から表示
- 回答順に表示
No.4
- 回答日時:
じつは、、a2+ b2 = c2 がなりたつとき
a、b のうち少なくとも 1つは偶数でなければならない。
かりにa、b両方とも奇数ならば c2は偶数の平方数だから
4でわりきれる、つまり c2≡0(mod4)
一方a≡±1、b≡±1(mod4)だから
a2+ b2≡2(mod4)これは矛盾だから
a、b のうち少なくとも 1つは偶数でなければならない。これと
a、b のうち少なくとも 1つは3の倍数でなければならないことから
abは6の倍数になる。
No.2
- 回答日時:
a,b,cは3の倍数・3で割ると1余り・3で割ると2余り、のいずれか。
a≡0,1,2(mod3)
b≡0,1,2(mod3)
c≡0,1,2(mod3)
c²≡0²,1²,2²≡0,1(mod3)
同様にa²≡0,1(mod3) b²≡0,1(mod3)
a²+b²が≡0,1(mod3)になる為には、0と0,又は0と1。1と1では無い。
少なくとも1方は≡0なので、a,bの少なくとも1方は3の倍数。
次にa,b,cは奇数か偶数のどちらかだから
a≡0,1(mod2)
b≡0,1(mod2)
c≡0,1(mod2)
c²≡0²,1²≡0,1(mod2)
同様にa²≡0,1(mod2) b²≡0,1(mod2)とも書ける。
これも足して0,1(mod2)になるには、どちらか一方は≡0
つまり、偶数で無いといけない。
両方をあわせると、1方は3の倍数、片方は2の倍数。
だからabは6の倍数
No.1
- 回答日時:
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
見学に行くとしたら【天国】と【地獄】どっち?
みなさんは、一度だけ見学に行けるとしたら【天国】と【地獄】どちらに行きたいですか? 理由も聞きたいです。
-
スマホに会話を聞かれているな!?と思ったことありますか?
スマートフォンで検索はしてないのに、友達と話していた製品の広告が直後に出てきたりすることってありませんか? こんな感じでスマホに会話を聞かれているかも!?と思ったエピソードってありますか?
-
モテ期を経験した方いらっしゃいますか?
一生に一度はモテ期があるといいますが、みなさんどうですか? いまがそう! という方も、「思い返せばこの頃だったなぁ」という方も、よかったら教えて下さい。
-
【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
「出身中学と出身高校が混ざったような校舎にいる夢を見る」「まぶたがピクピクしてるので鏡で確認しようとしたらピクピクが止まってしまう」など、 これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
-
今から楽しみな予定はありますか?
いよいよ2025年が始まりました。皆さんには、今から楽しみにしている予定はありますか?
-
a,b,cを整数とする。 a^2+b^2=c^2のとき、a,b少なくとも一方は偶数である。 これを示
高校
-
正の整数a.b.cが a^2+b^2=c^2をみたすとき a.bのいずれかは4の倍数である。 参考書
数学
-
ピタゴラス数について。
数学
-
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【選手権お題その3】この画像で一言【大喜利】
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・ちょっと先の未来クイズ第6問
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
【線形代数】基底、dimVの求め方
-
【遊びのピタゴラスイッチはな...
-
lim[x→+∞](x^n/e^x)=0 の証明
-
複素関数について 点aが特異点...
-
夏休みの宿題レポート☆★~三平...
-
複素積分で特異点が線上にある場合
-
格子点と正方形の枚数の関係
-
直角三角形じゃないのに三平方...
-
東大の数学
-
ほうべき(方巾)の定理について
-
ロピタルの定理
-
至急です! 数学で証明について...
-
ガウスの定理とストークスの定理
-
高校の数学です。
-
量子化定理とは?
-
至上最難問の数学がとけた
-
パップスギュルダンの定理について
-
大学の記述入試で外積は使えま...
-
傘を買うと雨は止む。
-
難しい質問 数学と物理の
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
【遊びのピタゴラスイッチはな...
-
至上最難問の数学がとけた
-
直角三角形じゃないのに三平方...
-
lim[x→+∞](x^n/e^x)=0 の証明
-
ほうべき(方巾)の定理について
-
大学の記述入試で外積は使えま...
-
至急です! 数学で証明について...
-
4色定理と5人の王子様の解に...
-
相似比の答え方・・・
-
ファルコンの定理は解かれまし...
-
11の22乗を13で割った余り...
-
パップスギュルダンの定理について
-
実数の整列化について
-
∠A=90°,AB=4,AC=3の直角三角...
-
【線形代数】基底、dimVの求め方
-
二つの円での平行の証明
-
完全数はどうして「完全」と名...
-
定理と公式は、どう違いますか?
-
複素幾何の予備知識
-
定理と法則の違い
おすすめ情報