写真のように、AB=9、BC=10、CA=6の△ABCがあり、∠Aの二等分線と辺BCの交点をDとする。点Aを通り点Dで辺BCに接する円と、2辺AB、ACとの交点をそれぞれE、Fとする。ただし、E、FはAと異なる点とする。また、線分ADとEFの交点をGとする。
(キ)、(ツ)については、当てはまるものを、次の0~6のうちから一つずつ選べ。ただし、同じものを繰り返し選んでもよい。
0、AC 1、AD 2、AE 3、AF 4、CD 5、DF 6、EG
(1) BD=(ア)であり、BD^2=(イ)BEが成り立つから、BE=(ウ)である。
また、CD=(エ)より、CF=(オ)/(カ)である。
(2) EF:BC=(キ):ABとなるから、EF=(ク)(ケ)/(コ)である。
(3) 面積の比は、
△AED:△ADC=(サ):(シ)
△ADC:△DFC=(ス):(セ)
となるから、△AED:△DFC=(ソ)(タ):(チ)である。
(4) △ADE∽△A(ツ)より、AD=√(テ)(ト)である。
解答が分からないので誰か教えて下さい。
途中の求め方もお願い致します。
No.2ベストアンサー
- 回答日時:
(1) BD=(ア)であり、BD^2=(イ)BEが成り立つから、BE=(ウ)である。
また、CD=(エ)より、CF=(オ)/(カ)である。
>
CD/BD=(10-BD)/BD=6/9からBD=6・・・(ア)
BD^2=BE*BA(方べきの定理)BA*・・・(イ)
BE=BD^2/BA=36/9=4・・・(ウ)
CD=10-BD=10-6=4・・・(エ)
CD^2=CF*CA(方べきの定理)
CF=CD^2/CA=16/6=8/3・・・(オ)/(カ)
(2) EF:BC=(キ):ABとなるから、EF=(ク)(ケ)/(コ)である。
>
AF/AE=(AC-CF)/(AB-BE)=(6-8/3)/(9-4)=(10/3)/5=2/3=6/9=AC/AB
よって△ABC∽△AEF、AB/BC=AE/EF、EF:BC=AE:AB、(キ)=2
EF=BC*AE/AB=10*(AB-BE)/9=10(9-4)/9=50/9・・・(ク)(ケ)/(コ)
(3) 面積の比は、
△AED:△ADC=(サ):(シ)
△ADC:△DFC=(ス):(セ)
となるから、△AED:△DFC=(ソ)(タ):(チ)である。
>
△AED/△ABD=5/9、△ABD/△ADC=6/4=3/2、△ABD=(3/2)△ADC
よって△AED=(5/9)△ABD=(5/9)(3/2)△ADC=(5/6)△ADC
△AED/△ADC=5/6、△AED:△ADC=5:6・・・(サ):(シ)
△ADC/△DFC=6/(8/3)=18/8=9/4、△ADC:△DFC=9:4・・・(ス):(セ)
△AED/△DFC={(5/6)△ADC}/{(4/9)△ADC}=(5/6)(9/4)=45/24=15/8
△AED:△DFC=15:8・・・(ソ)(タ):(チ)
(4) △ADE∽△A(ツ)より、AD=√(テ)(ト)である。
>
△ABC∽△AEFより∠AFE=∠ACD
∠AFE=∠ADE(円周角の定理)、よって∠ACD=∠ADEから
△ADE∽△ACD、(ツ)=4
AD/AE=AC/AD、AD^2=AE*AC=5*6=30、AD=√30・・・(テ)(ト)
No.3
- 回答日時:
(1) ∠Aに2等分線定理を適用して
BD/CD=AB/AC=9/6=3/2
BD=BC(BD/BC)=10(BD/(BD+CD))=10/(1+(CD/BD))=10/(1+(2/3))=30/5=6 ...(ア)
方べきの定理より
BD^2=BA*BE → (イ)=AB または BA
36=9*BE → BE=4 ... (ウ)
CD=BC-BD=10-6=4 ...(エ)
方べきの定理より
CD^2=CA*CF
16=6CF → CF=16/6=8/3 →(オ)/(カ)
(2) △AEF∽△ABCなので相似比より
EF:BC=AE:AB=(キ):AB → (キ)=AE
EF=BC(AE/AB)=10(AB-BE)/AB=10(9-4)/9=50/9 ← (ク)(ケ)/(コ)
(3)
△AED:△ADC=(AE/AB)△ABD:△ACD=(5/9)BD:CD=((5/9)3:4=5:12 ← (サ):(シ)
△ADC:△DFC=AF:CF=(AC-CF):CF=(6-(8/3)):(8/3)=10:8=5:4 ← (ス):(セ)
△AED:△DFC=(AE/AB)△ABD:(CF/AC)△ACD
=(5/9)△ABD:((8/3)/6)△ACD=(5/9)BD:(4/9)CD=6(5/9):4(4/9)
=30:16=15:8 ← (ソ)(タ):(チ)
(4) △ADE∽△AFG∽△ACD ← △A(ツ)より (ツ)=CD
AD/AE=AC/AD
AD^2=AC*AE=6*5=30
AD=√30 ← √(テ)(ト)
No.1
- 回答日時:
△ABCにおいて点Dは∠Aの二等分線であるから、
AB:AC=BD:DC(角の二等分線の性質)
よって、BD:DC=9:6
BD=10×9/15=6・・・答え
方べきの定理より、
BD^2=BE・BA
=9BE・・・答え
CD=10-6=4・・・答え
方べきの定理より、
CD^2=CF・CA
4^2=6CF
CF=8/3・・・答え
AE:EB=5:4
AF:FC=10/3:8/3=5:4
より、EF//BCがいえる。
だから、△AEF∽△ABC(∵2角がそれそれ等しい)
よって、EF:BC=AE:AB
EF:10=5:9
∴EF=50/9・・・答え
△AEDと△ADCは∠AED=∠ADC(円と接線の性質)、∠DAE=∠CAD(∠Aの二等分)より対応する2角がそれぞれ等しいから、△AED∽△ADC・・・※
相似な三角形の面積比は、対応する辺の2乗の比に等しいから、
△AED:△ADC=AE^2:AD^2・・・※1
ここでADの長さを求める。
※から対応する辺の比で等式を作ると、
AE:AD=AD:AC
AD^2=AE・AF
=5×6=30
よってAD=√30
※1より、
△AED:△ADC=AE^2:AD^2
=5^2:√30^2=25:30=5:6・・・答え
△ADC:△DFC=AC:FC(高さが共通でだから辺の比が面積比)
=6:8/3=9:4・・・答え
上記の2つの三角形の面積比で△ADCの数字をそろえる。
△AED:△ADC=5:6=45:54
△ADC:△DFC=54:24
よって、△AED:△DFC=45:24=15:8・・・答え
△ADC∽△AECは上記で証明済み。・・・答え
AD=√30も上記で導出済み・・・答え
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・集中するためにやっていること
- ・テレビやラジオに出たことがある人、いますか?
- ・【お題】斜め上を行くスキー場にありがちなこと
- ・人生でいちばんスベッた瞬間
- ・コーピングについて教えてください
- ・あなたの「プチ贅沢」はなんですか?
- ・コンビニでおにぎりを買うときのスタメンはどの具?
- ・おすすめの美術館・博物館、教えてください!
- ・ことしの初夢、何だった?
- ・【お題】大変な警告
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
大学の記述入試で外積は使えま...
-
【線形代数】基底、dimVの求め方
-
lim[x→+∞](x^n/e^x)=0 の証明
-
【遊びのピタゴラスイッチはな...
-
中学2年図形の証明についての質...
-
留数定理とコーシーの積分公式...
-
完全数はどうして「完全」と名...
-
置換の偶奇の一意性の証明について
-
11の22乗を13で割った余り...
-
直角三角形じゃないのに三平方...
-
入試で定理の名前を忘れてしま...
-
フーリエ級数収束定理とリーマ...
-
複素解析の分野における“原理”...
-
等角写像 画像に、ヤコビアンが...
-
ラプラス変換の最終値の定理に...
-
拡張ユークリッド互除法による...
-
ピタゴラス数について。
-
至上最難問の数学がとけた
-
パップスギュルダンの定理について
-
ブラウン運動の鏡像原理
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
【遊びのピタゴラスイッチはな...
-
至上最難問の数学がとけた
-
直角三角形じゃないのに三平方...
-
lim[x→+∞](x^n/e^x)=0 の証明
-
ほうべき(方巾)の定理について
-
大学の記述入試で外積は使えま...
-
至急です! 数学で証明について...
-
4色定理と5人の王子様の解に...
-
相似比の答え方・・・
-
ファルコンの定理は解かれまし...
-
11の22乗を13で割った余り...
-
パップスギュルダンの定理について
-
実数の整列化について
-
∠A=90°,AB=4,AC=3の直角三角...
-
【線形代数】基底、dimVの求め方
-
二つの円での平行の証明
-
完全数はどうして「完全」と名...
-
定理と公式は、どう違いますか?
-
複素幾何の予備知識
-
定理と法則の違い
おすすめ情報