整数係数方程式a_nx^n+a_(n-1)x^(n-1)+・・・・・・・・・+a_1x+a_0=0(a_n≠0,a_0≠0)の有理数解は±(a_0の絶対値の約数)/(a_nの絶対値の約数)の形である。
上記を「整数係数方程式の有理解の定理」としていきなり答案解答に使っていいものなんでしょうか?
http://mathtrain.jp/sqrt2irrational によると、
----引用開始-------------------------
「方程式 ax2+bx+c=0 の有理数解を q/p(既約分数)とおくと,p は a の約数で q は c の約数である」
という重要な定理を認めれば一発で証明できます。
この定理は入試でもよく使います。
----引用終了-------------------------
として√2が無理数であることの証明に用いられています。
入試解答文に記載する際
①「整数係数方程式の有理解の定理より」のように書いてしまってよいのか?
②「整数係数方程式a_nx^n+a_(n-1)x^(n-1)+・・・・・・・・・+a_1x+a_0=0(a_n≠0,a_0≠0)の有理数解は±(a_0の絶対値の約数)/(a_nの絶対値の約数)の形となることより」みたいにかくべきなのか?
このあたりについて、ご存知の方がおられましたら何卒よろしくご教示くださいませ。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【お題】絵本のタイトル
- ・【大喜利】世界最古のコンビニについて知ってる事を教えてください【投稿~10/10(木)】
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・ハマっている「お菓子」を教えて!
- ・最近、いつ泣きましたか?
- ・夏が終わったと感じる瞬間って、どんな時?
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
大学の記述入試で外積は使えま...
-
至上最難問の数学がとけた
-
二乗同士だから、2+1.5に変え...
-
【遊びのピタゴラスイッチはな...
-
ブラウン運動の鏡像原理
-
群論 Z^*_pは原始元を含む
-
完全数はどうして「完全」と名...
-
すべての馬は同色である。
-
lim[x→+∞](x^n/e^x)=0 の証明
-
十分性の確認について
-
「メネラウスの定理」、学校で...
-
数理論理学に関するアロンゾ・...
-
格子点と正方形の枚数の関係
-
置換の偶奇の一意性の証明について
-
学校の世界史の先生が言ってい...
-
直角三角形
-
長さがマイナスの答えのとき、...
-
定義と定理について
-
直角三角形じゃないのに三平方...
-
至急です! 数学で証明について...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
至上最難問の数学がとけた
-
大学の記述入試で外積は使えま...
-
lim[x→+∞](x^n/e^x)=0 の証明
-
【遊びのピタゴラスイッチはな...
-
直角三角形じゃないのに三平方...
-
階差数列・群数列について
-
ファルコンの定理は解かれまし...
-
パップスギュルダンの定理について
-
modを使用した平方根の求め方
-
定理と法則の違い
-
ほうべき(方巾)の定理について
-
数A nは自然数とする。n , n+2 ...
-
「整数係数方程式の有理解の定...
-
実数の整列化について
-
至急です! 数学で証明について...
-
三角形の3辺の長さの性質の証明
-
A,Bの異なる2つの箱に異なる1...
-
二次合同式の解き方
-
長さがマイナスの答えのとき、...
-
相似比の答え方・・・
おすすめ情報