
初めて質問させていただきます。
群論のなかで、「置換を互換の積で表したとき、その互換の数の偶奇は一意的に決まる」という定理がありますが、この定理の証明は、どれも用語や記号を使うものばかりで、一般に誰でも馴染めるようなものではありません。群論の用語を使わない(いわば、中学生にでも簡単に分かるような)証明は数学界で一般に知られているのでしょうか?
ネットで調べてみたところ、阿弥陀くじの概念を利用した証明などが見つかりましたが、これも理解にある程度の概念上の準備が必要です。
置換とか偶置換、奇置換といった概念自体が用語と言えば用語ですが、上の定理は本質的には、「ある数(その他何でも)の並びがあって、その中の任意の2つの場所を入れ替えることを繰り返すとき、奇数回の入れ替えでは決して元の並び方に戻ることはない」と言う命題と同じであり、この命題は誰にでも非常に明快に理解できるものです。この命題を理解するのと同じくらいの直感しか必要としないような証明は知られていないのでしょうか。
ご存知の方、よろしくお願いいたします。
A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
#1さんの仰るように、差積でしょうね。
それ以外の簡単な解答は、残念ながら思いつきませんでした。
差積の符号を考えることは、中学生でも簡単に分かると思いますが・・。
No.1
- 回答日時:
線形代数の参考書を見てください。
行列式の定義のところで出てきます。
あと、数学セミナー2007年12月号(日本評論社)に群論や線形代数とは別の視点から論じた記事が載っていたはずです。
線形代数、行列式、という分野で語られる内容なのですね。早速調べてみましたが、やはり記号の羅列ですね。私自身もいくつか証明法を試みましたが、一つの命題に焦点を当てたときに(その命題の解釈と)証明をどこまで直感的(簡潔)に出来るかということに興味があります・・(議論を展開する場ではないと存じますので、この辺りで・・・)。
数学セミナーに違ったアプローチが載っているとのこと、本屋に足を運んで調べてみようと思います。
ありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 日本語 意味とは何か、どこにあるのか? 16 2022/04/09 11:44
- 数学 『数学的帰納法のトリセツ』 4 2022/06/06 07:34
- 哲学 概念について 1 2023/04/09 15:09
- 哲学 説得力を修辞の巧みさまたは論理の強さの2つに分析するにはどうすると良いでしょうか? 0 2022/07/20 05:46
- 数学 『◯と●の帰納法』 2 2023/04/19 20:57
- 物理学 物理の証明問題についての質問です。 平面内を運動する小球がある。この物体にかかる加速度の方向と大きさ 2 2023/05/16 00:28
- 日本語 <代名詞><指示詞>という誤り 4 2022/04/01 11:06
- 英語 ソシュール言語観による品詞、単語、辞書理解の誤り 4 2022/11/24 12:27
- 日本語 「~人」と「~名」の使い分け 2 2022/06/02 11:59
- 英語 総称的意味の「the+過去分詞」が無冠詞複数形で置き換えることができない理由について 5 2022/08/04 10:14
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
【遊びのピタゴラスイッチはな...
-
至上最難問の数学がとけた
-
直角三角形じゃないのに三平方...
-
大学の記述入試で外積は使えま...
-
パップスギュルダンの定理について
-
ファルコンの定理は解かれまし...
-
定理と公式は、どう違いますか?
-
lim[x→+∞](x^n/e^x)=0 の証明
-
至急です! 数学で証明について...
-
ピタゴラス数について。
-
ほうべき(方巾)の定理について
-
二次合同式の解き方
-
aは自然数とする。a+5は4の倍...
-
完全数はどうして「完全」と名...
-
合同式の変形
-
実数の整列化について
-
数A nは自然数とする。n , n+2 ...
-
微分形式,微分幾何学の参考書
-
modを使用した平方根の求め方
-
4.6.8で割るとあまりはそれぞれ...
おすすめ情報