初めて質問させていただきます。
群論のなかで、「置換を互換の積で表したとき、その互換の数の偶奇は一意的に決まる」という定理がありますが、この定理の証明は、どれも用語や記号を使うものばかりで、一般に誰でも馴染めるようなものではありません。群論の用語を使わない(いわば、中学生にでも簡単に分かるような)証明は数学界で一般に知られているのでしょうか?
ネットで調べてみたところ、阿弥陀くじの概念を利用した証明などが見つかりましたが、これも理解にある程度の概念上の準備が必要です。
置換とか偶置換、奇置換といった概念自体が用語と言えば用語ですが、上の定理は本質的には、「ある数(その他何でも)の並びがあって、その中の任意の2つの場所を入れ替えることを繰り返すとき、奇数回の入れ替えでは決して元の並び方に戻ることはない」と言う命題と同じであり、この命題は誰にでも非常に明快に理解できるものです。この命題を理解するのと同じくらいの直感しか必要としないような証明は知られていないのでしょうか。
ご存知の方、よろしくお願いいたします。
A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
#1さんの仰るように、差積でしょうね。
それ以外の簡単な解答は、残念ながら思いつきませんでした。
差積の符号を考えることは、中学生でも簡単に分かると思いますが・・。
No.1
- 回答日時:
線形代数の参考書を見てください。
行列式の定義のところで出てきます。
あと、数学セミナー2007年12月号(日本評論社)に群論や線形代数とは別の視点から論じた記事が載っていたはずです。
線形代数、行列式、という分野で語られる内容なのですね。早速調べてみましたが、やはり記号の羅列ですね。私自身もいくつか証明法を試みましたが、一つの命題に焦点を当てたときに(その命題の解釈と)証明をどこまで直感的(簡潔)に出来るかということに興味があります・・(議論を展開する場ではないと存じますので、この辺りで・・・)。
数学セミナーに違ったアプローチが載っているとのこと、本屋に足を運んで調べてみようと思います。
ありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 日本語 意味とは何か、どこにあるのか? 16 2022/04/09 11:44
- 数学 『数学的帰納法のトリセツ』 4 2022/06/06 07:34
- 哲学 概念について 1 2023/04/09 15:09
- 哲学 説得力を修辞の巧みさまたは論理の強さの2つに分析するにはどうすると良いでしょうか? 0 2022/07/20 05:46
- 数学 『◯と●の帰納法』 2 2023/04/19 20:57
- 物理学 物理の証明問題についての質問です。 平面内を運動する小球がある。この物体にかかる加速度の方向と大きさ 2 2023/05/16 00:28
- 日本語 <代名詞><指示詞>という誤り 4 2022/04/01 11:06
- 英語 ソシュール言語観による品詞、単語、辞書理解の誤り 4 2022/11/24 12:27
- 日本語 「~人」と「~名」の使い分け 2 2022/06/02 11:59
- 英語 総称的意味の「the+過去分詞」が無冠詞複数形で置き換えることができない理由について 5 2022/08/04 10:14
このQ&Aを見た人はこんなQ&Aも見ています
-
見学に行くとしたら【天国】と【地獄】どっち?
みなさんは、一度だけ見学に行けるとしたら【天国】と【地獄】どちらに行きたいですか? 理由も聞きたいです。
-
3分あったら何をしますか?
カップ麺にお湯を入れて、できるまでの3分間で皆さんは何をしていますか?
-
【お題】マッチョ習字
【大喜利】 「精神を鍛えるため」にと、ジムから書初めの宿題を出されたマッチョたちが半紙に書いてきたこと
-
【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
「出身中学と出身高校が混ざったような校舎にいる夢を見る」「まぶたがピクピクしてるので鏡で確認しようとしたらピクピクが止まってしまう」など、 これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
-
2024年においていきたいもの
2024年もあとわずかですが、いま抱えているもので「これは来年にもっていきたくないなぁ」というものを教えて下さい。
-
互換の個数の偶奇が一定であることについて
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「黒歴史」教えて下さい
- ・2024年においていきたいもの
- ・我が家のお雑煮スタイル、教えて下さい
- ・店員も客も斜め上を行くデパートの福袋
- ・食べられるかと思ったけど…ダメでした
- ・【大喜利】【投稿~12/28】こんなおせち料理は嫌だ
- ・前回の年越しの瞬間、何してた?
- ・【お題】マッチョ習字
- ・モテ期を経験した方いらっしゃいますか?
- ・一番最初にネットにつないだのはいつ?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
【遊びのピタゴラスイッチはな...
-
大学の記述入試で外積は使えま...
-
至上最難問の数学がとけた
-
ほうべき(方巾)の定理について
-
lim[x→+∞](x^n/e^x)=0 の証明
-
夏休みの宿題レポート☆★~三平...
-
直角三角形じゃないのに三平方...
-
3点が一直線上である証明
-
Sku
-
複素幾何の予備知識
-
メネラウスの定理ってどういう...
-
フェルマーの最終定理(オイラー...
-
場合の数の問題なんですが、 40...
-
2019^2019を31で割ったときのあ...
-
超難問なんですが数学詳しい方...
-
三垂線の定理についての質問で...
-
実数の整列化について
-
大学数学 解答
-
至急です! 数学で証明について...
-
位数56の単純群は存在しない
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
lim[x→+∞](x^n/e^x)=0 の証明
-
大学の記述入試で外積は使えま...
-
至上最難問の数学がとけた
-
ほうべき(方巾)の定理について
-
【遊びのピタゴラスイッチはな...
-
直角三角形じゃないのに三平方...
-
至急です! 数学で証明について...
-
相似比の答え方・・・
-
【線形代数】基底、dimVの求め方
-
パップスギュルダンの定理について
-
定理と法則の違い
-
二次合同式の解き方
-
ファルコンの定理は解かれまし...
-
△ABCの∠Aの2等分線と辺BCとの交...
-
「有限個の素イデアルしか持た...
-
実数の整列化について
-
高校の数学です。
-
オイラーの多面体定理の拡張
-
留数定理とコーシーの積分公式...
-
中学2年図形の証明についての質...
おすすめ情報