
非常に初歩的な質問ですみません。
今の私の解釈では・・・
【仮定】
・問題文に出てきた事象。
・結論にはなり得ない。
【定義】
・証明をしなくてもわかりきっている(知識として丸覚えしなければならない)特徴。
・問題を解く際、答えでここへたどり着く証明をすれば、その図形であることがいえる(例:~により、AB=CB(2辺の長さが等しい)なので三角形ABCは二等辺三角形である)。つまり、結論になり得る。
【定理】
・以前証明してはっきりした特徴。
・結論になり得る?
習った内容をすっかり忘れてしまい、結論になり得るのはてっきり「定義」のみかと思って問題集の証明を解いていたのですが、どうやら模範解答を読むと定理も結論にしていいようで…
つまりは・・・
・定義と定理の違いはさほどなく、両方とも図形の特徴(性質)である。
・よって、定義のみならず定理も丸覚えせねばならない。
ということになるのでしょうか?
図形の性質については小学校でも触れているので、定義と定理にさほど違いが無ければ、とりあえず特徴を片っ端から思い出して証明を解けばいい話なのでちょっと気が楽になっていいなあと思っているのですが・・・如何でしょうか?

No.1ベストアンサー
- 回答日時:
「定義」は決められた事です。
例えば直角三角形の定義は「内角の1つが直角である三角形」。
決まったことなので、理由も何もありません。
それに対し、「定理」は証明により導き出された法則です。
例えば「ピタゴラスの定理」。
これは「~なので、ピタゴラスの定理により、三角形ABCは直角三角形である」
という風に証明に使うことができます。
「定理」はもちろん丸暗記していると便利ですが、証明により導き出すことができるので、必ず丸暗記しなければならないということはありません。
回答ありがとうございます。
「定理」は証明により導き出すことが"出来る"との事ですが・・・
・周知の事実と解釈してよい。
・よって、使用するごとに幾度も幾度も定理を導き出すまでの証明を書く必要はない。
…ということでいいんでしょうか?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数A nは自然数とする。n , n+2 ...
-
至上最難問の数学がとけた
-
【線形代数】基底、dimVの求め方
-
重心点の位置
-
「数学が好き」という人は、ど...
-
数Iの問題です
-
フーリエの積分定理がわかりません
-
整数問題9 激難 続き ご迷惑を...
-
数学の《mod》について詳しく、...
-
実数の整列化について
-
剰余算
-
A,Bの異なる2つの箱に異なる1...
-
定理と公式は、どう違いますか?
-
【遊びのピタゴラスイッチはな...
-
高一数学接弦定理 〔 チャート ...
-
x^100を(x+1)^2で割ったときの...
-
大学の記述入試で外積は使えま...
-
√101(mod247)=71の意味
-
4.6.8で割るとあまりはそれぞれ...
-
留数定理とコーシーの積分公式...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
大学の記述入試で外積は使えま...
-
【遊びのピタゴラスイッチはな...
-
lim[x→+∞](x^n/e^x)=0 の証明
-
ピタゴラス数について。
-
至上最難問の数学がとけた
-
【線形代数】基底、dimVの求め方
-
「整数係数方程式の有理解の定...
-
数A nは自然数とする。n , n+2 ...
-
接弦定理の逆は、高校で習いま...
-
A,Bの異なる2つの箱に異なる1...
-
置換の偶奇の一意性の証明について
-
直角三角形じゃないのに三平方...
-
オイラーの多面体定理の拡張
-
留数定理とコーシーの積分公式...
-
この問題の解き方を教えてください
-
完全数はどうして「完全」と名...
-
フーリエの積分定理がわかりません
-
数学です!! この問題を分かり...
-
ほうべき(方巾)の定理について
-
ロピタルの定理
おすすめ情報