
数学の主表象とはなんですか?Wikipediaの説明にも置換積分法
∫f(x)dx=∫f(x)dx/dt・dt
の証明なのですが、この続きの展開もよくわかりません。
∫f(x)dxとおくとdy/dx=f(x)(質問の内容)
合成関数の微分公式から
dy/dt=dy/dx・dx/dt
=f(x)dx/dt
よって、∫f(x)dx/dt・dt
したがって、∫f(x)dx=∫f(x)dx/dt・dt
わかる人がいたら教えて貰えないでしょうか?
No.2ベストアンサー
- 回答日時:
No.1
- 回答日時:
∫f(x)dx = ∫f(x)dx/dt・dt という式は、両辺が不定積分ですから、
それぞれに適切な積分定数を与えれば等号が成り立つという意味です。
∃C, ∫f(x)dx = ∫f(x)dx/dt・dt + C だと言ってもいい。
それは、両辺を t で微分した (d/dt)∫f(x)dx = f(x)dx/dt とも同値です。
F(x) = ∫f(x)dx と置くと、合成関数の微分公式により
(d/dt)F(x) = {(d/dx)F(x)}(dx/dt) = {(d/dx)∫f(x)dx}(dx/dt) = f(x)dx/dt
ですから、上の式は成り立っていますね。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
微小量とはいったいなんでしょ...
-
教えてください
-
数学の f(f(x))とはどういう意...
-
マクローリンの定理の適用のし...
-
微分の公式の導き方
-
f(x) g(x) とは?
-
左上図、左下図、右上図、右下...
-
数学 定積分の問題です。 関数f...
-
絶対値を外すときの判別式の利...
-
複素関数f(z)のテーラー展開や...
-
逆関数についてですが、y=f(x)...
-
ニュートン法について 初期値
-
微分について
-
ピークを一つだけ持ち、それ以...
-
二次関数 必ず通る点について
-
xの多項式f(x)最高次の項の係数...
-
f(x)+∫f(t)=sinxのときf(x)は?
-
関数f(x)がC∞-級関数であること...
-
関数f(x)をf(x)=インテグラル(0...
-
「次の関数が全ての点で微分可...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学の f(f(x))とはどういう意...
-
f(x) g(x) とは?
-
差分表現とは何でしょうか? 問...
-
∫[x=0~∞]logx/(1+x^2)の広義積...
-
"交わる"と"接する"の定義
-
極限、不連続
-
【数3 式と曲線】 F(x、y)=0と...
-
微小量とはいったいなんでしょ...
-
左上図、左下図、右上図、右下...
-
マクローリンの定理の適用のし...
-
マクローリン展開
-
ニュートン法について 初期値
-
微分について
-
数学の記法について。 Wikipedi...
-
数学の問題で質問があります。
-
次の等式を満たす関数f(x)を求...
-
次の関数の増減を調べよ。 f(x)...
-
f(x)=sin(x)/x って、とくにf(0...
-
関数 f(x) = e^(2x) につい...
-
マクローリン展開の問題です n=...
おすすめ情報
すみません。最初の「数学の主表象とはなんですか?Wikipediaの説明にも」の部分はどこかのクリップボードがくっついて一緒に貼りつけてしまいました。関係ないものです。
置換積分法についてですが、ネットのサイトやYouTubeの動画を5,6本見ましたが、それても未だに良く理解できてません。