
数学の主表象とはなんですか?Wikipediaの説明にも置換積分法
∫f(x)dx=∫f(x)dx/dt・dt
の証明なのですが、この続きの展開もよくわかりません。
∫f(x)dxとおくとdy/dx=f(x)(質問の内容)
合成関数の微分公式から
dy/dt=dy/dx・dx/dt
=f(x)dx/dt
よって、∫f(x)dx/dt・dt
したがって、∫f(x)dx=∫f(x)dx/dt・dt
わかる人がいたら教えて貰えないでしょうか?
No.2ベストアンサー
- 回答日時:
No.1
- 回答日時:
∫f(x)dx = ∫f(x)dx/dt・dt という式は、両辺が不定積分ですから、
それぞれに適切な積分定数を与えれば等号が成り立つという意味です。
∃C, ∫f(x)dx = ∫f(x)dx/dt・dt + C だと言ってもいい。
それは、両辺を t で微分した (d/dt)∫f(x)dx = f(x)dx/dt とも同値です。
F(x) = ∫f(x)dx と置くと、合成関数の微分公式により
(d/dt)F(x) = {(d/dx)F(x)}(dx/dt) = {(d/dx)∫f(x)dx}(dx/dt) = f(x)dx/dt
ですから、上の式は成り立っていますね。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 【全微分について】 z=f(x,y) の全微分は df=(∂f/∂x)dx+(∂f/∂y)dy と表 1 2023/02/25 05:49
- 数学 微分方程式 2 2023/05/08 22:56
- 数学 f(x,y)=-2y/(x^2+y^2) という関数を不定積分すると、 ∫ -(2y)/(x^2 + 2 2023/06/12 20:25
- 物理学 物体に一定の大きさfの力をx軸の正の向きに加える。またこの物体には抵抗係数がγの速度に比例する抵抗力 2 2023/07/06 04:01
- 数学 積分と不等式 2 2023/01/26 21:52
- 数学 全微分について質問です。 z=f(x,y)のとき df=(∂f/∂x)dx+(∂f/∂y)dy ∂f 5 2023/02/24 05:46
- 数学 積分について ∫f(x)dxの外側に変数xが含まれた式が積の形で付いていた場合、それも積分の対象にな 3 2024/01/19 19:12
- 数学 テイラー展開について r↑(x+dx,y+dy,f(x+dx,y+dy))を点(x,y,f(x,y) 4 2023/03/08 01:06
- 数学 dx/dt = |y| , dy/dt = x (-∞<t<∞) をとけ 1 2022/09/17 09:56
- 数学 微分(全微分)についての質問です。 2 2022/04/07 17:08
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
微分について
-
一般的にこれは成り立つのでし...
-
数学の f(f(x))とはどういう意...
-
関数方程式 未知関数
-
数学にでてくるf(x)とかいうの...
-
大学への数学(東京出版)に書...
-
定積分と図形の面積
-
a^8+a^6+5a^4+4a^2+4の因数分解
-
積分する前のインテグラルの中...
-
導関数と微文法
-
微分の公式の導き方
-
微分
-
「次の関数が全ての点で微分可...
-
極限操作は不等号関係を保存し...
-
f(x)=xe^-2xの極大値
-
関数の極限
-
左上図、左下図、右上図、右下...
-
【数3 式と曲線】 F(x、y)=0と...
-
線形2階微分方程式と非線形2...
-
差分表現とは何でしょうか? 問...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
左上図、左下図、右上図、右下...
-
数学の f(f(x))とはどういう意...
-
微小量とはいったいなんでしょ...
-
"交わる"と"接する"の定義
-
差分表現とは何でしょうか? 問...
-
微分について
-
【数3 式と曲線】 F(x、y)=0と...
-
数学の記法について。 Wikipedi...
-
ニュートン法について 初期値
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
三次関数が三重解を持つ条件とは?
-
次の等式を満たす関数f(x)を求...
-
次の関数の増減を調べよ。 f(x)...
-
問431,不等式x⁴-4x³+28>0を証...
-
関数が単調増加かどうか調べる...
-
なんで(4)なんですけど 積分定...
-
関数方程式f(x)=f(2x)の解き方...
-
積分する前のインテグラルの中...
-
どんな式でも偶関数か奇関数の...
おすすめ情報
すみません。最初の「数学の主表象とはなんですか?Wikipediaの説明にも」の部分はどこかのクリップボードがくっついて一緒に貼りつけてしまいました。関係ないものです。
置換積分法についてですが、ネットのサイトやYouTubeの動画を5,6本見ましたが、それても未だに良く理解できてません。