こういう文章がありました。
『第一級ハロゲン化アルキルに求核試薬を用いるとSn2置換を行う。tert-ブトキシドのような強くてかさ高い塩基を用いるとE2脱離が起こる。』
前半部分は分かるのですが、後半部分の“かさ高い”の部分がイマイチ分かりません。かさ高いことは何の役に立つのですか?

このQ&Aに関連する最新のQ&A

A 回答 (3件)

rei00 です。



 ご質問の内容の説明が「ヴォルハルト・ショア- 有機化学 第3版」に載っています。第7章の「7-8 Competition Between Substitution and Elimination(英語版しか持ってませんので日本語訳は不明です)」をご覧下さい。

 他の教科書でも出ているとは思いますが,念のため。
    • good
    • 0

 chemostry さんはSn2反応やE2反応の機構はご存知でしょうか?以下,お書きの第一級ハロゲン化アルキルで説明しますが,いづれも遷移状態ではハロゲン化アルキルと求核剤(塩基)が関与しています。



 Sn2反応では,求核剤がハロゲンの付いた炭素(反応中心です)に対して,ハロゲンの反対側から攻撃し,置換反応が起こります。この場合,求核剤が反応中心に近づかなくてはなりませんが,反応中心の炭素には水素やアルキル基が存在し,求核剤の接近をさまたげています。求核剤が小さい場合はそれでも反応が起こりますが,tert-ブトキシドのようなかさ高い塩基では接近が困難になり,Sn2反応は非常に起こりにくくなります。

 一方,E2反応では,塩基の攻撃はハロゲンが付いた炭素の隣の炭素に存在する水素に起こります。この水素の炭素と反対側には何も付いておらず,塩基の接近は殆ど影響を受けません。したがって,tert-ブトキシドのようなかさ高い塩基でも接近して反応が起こります。

 このように,かさ高い事は「立体障害」によって,Sn2反応の反応中心への接近を妨げ,Sn2反応を起こりにくくする役に立っています。

 いかがでしょうか。この辺りの説明は,有機化学の教科書のSn2反応やE2反応が出ている辺りに必ず載っています。もう一度教科書を読み直してみられる方が良いと思います。
    • good
    • 0

私の関係していた頃とかなり言葉が.変わっているので.間違っている可能性があります。



「かさだかい」という言葉は.ターシャルブチルき((CH3)3C-)のような周りを巨大な電子雲で囲まれて特定の反応活性点以外の点の反応性を抑えている場合に使います。
この場合に.メチルきの水素が邪魔をして.ターシャルブチル気のアルファ位やベーターいの反応活性が高くても試薬がちかよれません。従って反応が起こりません。

酵素やシクロセルロースのような特定の反応部位に限って試薬を近づけたい場合に反応しては困る部位にかさだかい基を導入します。分子設計においては結構便利です。
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QL体とD体

糖はD体、アミノ酸はL体の異性体で構成されますが、異性体のD体とL体の見分け方を教えてください。

Aベストアンサー

 構造式を見てDとLを見分ける方法についての質問と解釈して解答します。
 D、L表示法は糖やアミノ酸の絶対配置が求められる以前からある表記法です。(+)-グリセルアルデヒドにD、(-)-グリセルアルデヒドにLを接頭 辞としてつけます。DかLか見分けたい化合物(糖やアミノ酸)に含まれる不斉炭素のうち、IUPACルールにおいて最も番号の大きい不斉炭素の絶対配置がD-(+)-グリセルアルデヒドと等しい場合にD体とし、L-(-)-グリセルアルデヒドと等しい場合をL体とします。因みにD-(+)-グリセルアルデヒドはFischer投影式において、上がCHO、右がOH、左がH、下がCH2OHとなる構造です。
 もうひとつ言っておくと、L体の糖やD体のアミノ酸もちゃんと存在します。血液型を決める多糖の構成成分にはL-フコースがあり、哺乳動物の脳にはD-セリンとD-アスパラギン酸が存在し、脳の高次機能に関係しているのではないかと考えられています。

QSn1反応とSn2反応の違い

Sn1反応およびSn2反応になる条件について調べています。調べたところ両者には以下のような条件の違いがありました。

*Sn1反応*
[中間体]・・・・・3級>2級>1級>メチル
[反応条件]・・・・中性~酸性
[試薬の求核性]・・重要でない

*Sn2反応*
[中間体]・・・・・メチル>1級>2級>3級
[反応条件]・・・・中性~塩基性
[試薬の求核性]・・重要

中間体による違いは、カルボカチオンの超共役効果や立体障害に依存するのだと思います。しかし反応条件や試薬の求核性がどのようにSn1反応とSn2反応に関係するのかが分かりません。例えば、「なぜSn1反応は中性~酸性条件で進行するのか」といったようなことです。どなたか教えてください。

Aベストアンサー

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,どちらの反応の律速段階の反応速度が速いかで決ります。律速段階の反応速度が速い方の機構を通って反応が進行するわけです。

 さて,Sn1 反応の律速段階は御存知の様にカルボカチオンが生じる段階です。つまり,カルボカチオンができ易い程 Sn1 反応は速くなります。一方,Sn2 反応では反応中心の炭素が5つの結合を持った状態が遷移状態ですので,この状態ができ易いもの程反応が速くなります。

 まず,お書きの『中間体』についてです。カルボカチオンの安定性が「3級>2級>1級>メチル」の順であるのは御存知ですよね。これは付いているアルキル基の電子供与性効果と超共役による安定化がこの順で大きいからです。逆にこの順で立体障害が大きくなり,求核剤の接近は困難になります。つまり,「3級>2級>1級>メチル」の順で Sn1 反応の速度は速くなり,Sn2 反応の速度は遅くなります。結果,反応機構が Sn1 → Sn2 にシフトします。

 次に,『試薬の求核性』です。上記した様に Sn1 反応の律速段階はカルボカチオンができる段階であり,求核試薬はこの段階には関与しません。そのため,試薬の求核性は Sn1 反応にはあまり影響しません(重要でない)。一方,Sn2 反応では遷移状態の形成に求核試薬が関与しますので,遷移状態が出来やすい(試薬の求核性が高い)程反応は速くなります(試薬の求核性が重要)。結果,試薬の求核性が高い程 Sn2 反応で進行しやすくなります。

 最後に問題の『反応条件』です。何度も繰り返しになりますが,Sn1 反応の律速段階はカルボカチオンが出来る段階です。この過程では脱離基が抜けてカルボカチオンが生じると同時に,脱離基はアニオンになります。結果,このアニオンを安定化する条件(つまり,酸性もしくは中性)の方が Sn1 反応が進みやすくなります。逆に Sn2 反応は,求核試薬が剥出しの状態になる塩基性の方が攻撃性が高まり反応が速くなります(塩基でもある求核試薬を酸性条件下に置くと酸と反応してしまいます)。結果,塩基性から酸性になるに連れて,反応機構は Sn2 → Sn1 にシフトします。

 ざっとこんな感じですが,要点だけ纏めると,「カルボカチオンができ易い,脱離基が脱離し易い」条件は Sn1 に有利ですし,「アニオンができ易い,求核試薬が攻撃し易い」条件は Sn2 反応に有利です。そして,「求核置換反応の機構は Sn1 か Sn2 のどちらか」ですので,反応が起こらない場合は別にして,Sn1 反応が起こり難くなると Sn2 機構で,Sn2 反応が起こり難くなると Sn1 機構で反応が起こります。

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,...続きを読む

Qアキラルとは。

アキラルというものが解りません。辞書によると
キラルというのは像と鏡像が重なり合わないもので、
アキラルは像と鏡像が重なり合うらしいのですが、
(像と鏡像が)重なり合うと云う事は、おんなじ物質
というのと違うのでしょうか。

どなたか詳しい方がいらっしゃいましたら回答
宜しくお願いします。

Aベストアンサー

> アキラルというものが解りません。

 簡単に言えば,「キラルでないもの」をアキラルといいます。


> アキラルは像と鏡像が重なり合うらしいのですが、
> (像と鏡像が)重なり合うと云う事は、おんなじ物質
> というのと違うのでしょうか。

 はい,同じ物質です。よく使われる例に手袋があります。右手用(あるいは左手用)の手袋を鏡に写すと,左手用(右手用)になり,元の右手用(左手用)とは異なります。この様な場合を「キラル」と言います。

 一方,靴下の場合,右足(左足)用とも形が同じですので,右(左)足用の靴下を鏡に写しても同じ右(左)足用になります。この様に,鏡に写しても元と同じになる場合を「アキラル」と言います。

 「キラル」,「アキラル」と言う言葉は出てきませんが,下の過去質問「QNo.337088 光学不活性・・・」の ANo.#3 の回答とそこで紹介されている過去質問が参考になると思います。

参考URL:http://www.okweb.ne.jp/kotaeru.php3?q=337088

Q安定性が第三級>第二級>第一級になるのは何故?

学校の課題で、安定性がこのようになるのは何故なのか説明しなければいけないのですが、教科書(「パイン有機化学I」p202)を読んでもよくわかりません。

超共役や誘起効果が関わると思うのですが、それをどのように理解したら「第三級>第二級>第一級」と安定性が説明できるんでしょうか??

わかりやすいHPなどでも結構です。
急ですが、明日中にお願いします。

Aベストアンサー

カルボカチオンの安定性の話ですね。
単純化すれば、アルキル基が電子供与性の誘起効果を示すために、それが正電荷を持つ炭素に多く結合しているほどカルボカチオンの正電荷を中和されるために、安定化されるということです。
そのために、アルキル基の数が多いほどカルボカチオンが安定であり、それを言い換えると「カルボカチオンの安定性は、第三級>第二級>第一級である」ということになるわけです。

アルキル基が電子供与性を示す理由として用いられるのが超共役の考え方です。
すなわち、通常の共鳴においては、単結合が切れたような構造は考えませんが、超共役というのは、C-H結合の切れた構造を含む共鳴のようなものと考えればわかりやすいと思います。
図はパインの教科書にも書かれていると思いますが、C-H結合が切れた構造においては、形式的に、その結合に使われていた電子対が、正電荷を持っていた炭素原子に移動して、その正電荷を中和しています。その結果、正電荷は、切れたC-H結合を有していた炭素上に移動します。このことは、共鳴の考え方によれば、超共役によって、正電荷が分散した(非局在化した)ということになり、安定化要因になります。

要するに、超共役というのは、単結合の切れたような構造を含む共鳴のようなものであり、その構造がカルボカチオンの正電荷を非局在化させ、安定化に寄与するということです。正電荷を持つ炭素に結合しているアルキル基の数が多いほど、上述の超共役が起こりやすくなり、カルボカチオンが安定化されるということです。

カルボカチオンの安定性の話ですね。
単純化すれば、アルキル基が電子供与性の誘起効果を示すために、それが正電荷を持つ炭素に多く結合しているほどカルボカチオンの正電荷を中和されるために、安定化されるということです。
そのために、アルキル基の数が多いほどカルボカチオンが安定であり、それを言い換えると「カルボカチオンの安定性は、第三級>第二級>第一級である」ということになるわけです。

アルキル基が電子供与性を示す理由として用いられるのが超共役の考え方です。
すなわち、通常の共鳴...続きを読む

Qカルボカチオンの安定性

一級カルボカチオンは、二級、三級に比べて不安定ですが、一級でも安定なカルボカチオンがあるそうなんです、それはどういったものなんでしょうか?
なぜ安定になるのか説明もしてくださると大変うれしいです。

Aベストアンサー

おそらくアリルカチオンではないでしょうか。

CH2=CH-CH2-というアリル基を持つアリルカチオンCH2=CH-+CH2は、+CH2-CH=CH2との共鳴があるので安定です。これらの原子は全て同一平面上にあります。これら3つの炭素原子は全てsp2混成していて、分子平面に対し垂直なp軌道を持っています(普通のアルケンと同じような軌道です)。カルボカチオンの空いたp軌道が二重結合のπ軌道と重なることで安定します。

アリルカチオンは簡単な第1級アルキルカチオンよりも安定で、その相対的安定性は第2級アルキルカチオンに匹敵するそうです。

ちなみにアリルアニオン、アリルラジカルも同様の理由で安定です。

Q酸無水物を使ったFriedel-Craftsアシル化について

Friedel-Crafts反応のアシル化について質問させて下さい。
教科書にも出てくる塩化アルミニウムを使った酸塩化物での反応機構は理解できるのですが、酸触媒を使った酸無水物でのアシル化の反応機構が分かりません。

例えば、過塩素酸を触媒とした反応でベンゼンを無水酢酸でアシル化した場合、アセトフェノンが出来ると思いますが、これらの反応機構はどのように進むのか
また、副生成物等の有無や化学等量の関係など、もしご存知の方がいらっしゃいましたらご教授願います。
詳しく解説されているサイト等もございましたら是非教えていただければと思います。

どうぞ宜しくお願い致します。

Aベストアンサー

いずれにしても、アシルカチオンが生じることにかわりはありません。
無水酢酸とH+が反応することによって、酢酸とアセチルカチオンが生じます。
そこから先は、通常のFriedel-Crafts反応と同じです。
通常のFriedel-Crafts反応では、HClが生じますが、酸無水物を使うとその代わりにカルボン酸が生じます。

QW/V%とは?

オキシドールの成分に 過酸化水素(H2O2)2.5~3.5W/V%含有と記載されています。W/V%の意味が分かりません。W%なら重量パーセント、V%なら体積パーセントだと思いますがW/V%はどのような割合を示すのでしょうか。どなたか教えていただけないでしょうか。よろしくお願いいたします。

Aベストアンサー

w/v%とは、weight/volume%のことで、2.5~3.5w/v%とは、100ml中に2.5~3.5gの過酸化水素が含有されているということです。
つまり、全溶液100ml中に何gの薬液が溶けているか?
ということです。
w/v%のwはg(グラム)でvは100mlです。

Q炭酸カリウムについて

ウィリアムソンのエーテル合成等でよく水素化ナトリウムとDMFを使ったりするのを目にしますが、
炭酸カリウムとDMFという組み合わせはあるのでしょうか?
炭酸カリウムを塩基として使用する場合、水が必ず必要で、炭酸カリウムは有機溶媒中では、塩基としての役割を果たせないのでしょうか?

Aベストアンサー

>炭酸カリウムとDMFという組み合わせはあるのでしょうか?
あります。

>炭酸カリウムを塩基として使用する場合、水が必ず必要で、炭酸カリウムは有機溶媒中では、塩基としての役割を果たせないのでしょうか?
そんなことはありません。ただし、溶媒にもよります。溶媒の極性が極端に小さかったりすれば難しいこともあるかもしれません。

Q結合性軌道と反結合性軌道とは?

結合性軌道と反結合性軌道とはどういうものなのでしょうか?
調べてみたのですが少し専門的で理解できませんでした。
初心者にも分かる程度にご教授お願いいたします。

また、「水素の分子軌道において、基底状態では反結合性軌道に電子が含まれない」ということも合わせて教えていただけるとうれしいです。

Aベストアンサー

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2つの原子核を引き寄せ結合を生成しますから、「結合性軌道」と呼ばれます。
しかしエネルギーの高い方の軌道では、2つの軌道の電子波は位相を逆向きにして重なるのです。
すると、重なった部分の電子密度は低くなり、2つの原子間とは反対方向の電子密度が高くなります。
結果、この軌道はそれぞれの原子を結合とは逆向きに引き離し、結合を破壊する性質を持つので「反結合性軌道」と呼ばれます。

水素分子H2では、このように2つの1s軌道から結合性軌道・反結合性軌道ができます。
電子は合わせて2つです。パウリの原理に従い、エネルギーの低い軌道から電子を詰めていくと、2つの原子はどちらも結合性軌道に位置します。
反結合性軌道には電子は入っていません。

結合次数は (結合性軌道中の電子 + 反結合性軌道中の電子)/2 で求められます。水素分子の結合次数は1となります。
水素分子の結合は単結合である、ということに一致していますね。

分子軌道法はこのように考えます。

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2...続きを読む

Q求核剤の反応性の強さの指標について

塩基性については、電子の共鳴などでどの塩基が強いなどはわかるのですが、求核性に関してはよくわかりません。

塩基性と求核性には、関連性がないみたいなのですが、求核性に関して、強さの理由みたいなものはないのでしょうか?

Aベストアンサー

求核性に関しては、通常、求核置換反応の速度によって比較します。
一般論として、求核性を判断する際の検討要因はいくつかあります。

まず、同一族の元素(たとえば、I-とBr-とCl-など)の比較であれば、原子番号の大きい方が求核性が大きくなります。
すなわち、I->Br->Cl->F-あるいはHS->OH-などです。

次に、同種の原子が求核性を示す場合には、より大きな負電荷を有するものの方が求核性は大きくなります。たとえば、OH-はH2Oよりも強い求核剤です。それは酸素原子上の電荷の違いによるものと説明出来ます。

また、ご質問にある塩基性に関しては、同じ種類の原子の求核性を比較するのであれば、強塩基であるほど求核性も大きくなります。たとえば、アルコキシドはフェノキシドよりも強い求核剤であり、フェノキシドはカルボキシラートよりも強い求核剤です。上述の、H2OとOH-の求核性の違いについても同じ考え方が適用できます。

また、これら以外に立体的な要因で求核性が小さくなる場合もあります。たとえば、tert-ブトキシドなどはその例です。

現実問題として上述以外の比較であれば、データ集を見るなどのことをする必要はありますが、こうした内容だけでもかなりのことがわかります。

ついでにHSAB則のことですが、これに関して過大に意識することは無意味です。反応点が2カ所あるものの反応であれば、HSAB則の考え方は重要ですが、そういう事態は一般的とはいえないでしょうし、ご質問の主旨からも外れてるでしょう。

求核性に関しては、通常、求核置換反応の速度によって比較します。
一般論として、求核性を判断する際の検討要因はいくつかあります。

まず、同一族の元素(たとえば、I-とBr-とCl-など)の比較であれば、原子番号の大きい方が求核性が大きくなります。
すなわち、I->Br->Cl->F-あるいはHS->OH-などです。

次に、同種の原子が求核性を示す場合には、より大きな負電荷を有するものの方が求核性は大きくなります。たとえば、OH-はH2Oよりも強い求核剤です。それは酸素原子上の電荷の違いによるものと説明出...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング