芸人が音声解説 「オレたちの甲子園」

一次相転移と二次相転移をそれぞれ何かがよく理解していません。
簡単に説明して頂けたら幸いです。

A 回答 (1件)

教科書的回答ですが・・・。



相転移は高温相の自由エネルギーと低温相の自由エネルギーが等しくなる温度Tcで起こります。「自由エネルギーの温度による一階微分がTcで不連続な相転移」、すなわち高温相の自由エネルギーと低温相の自由エネルギーのグラフを温度の関数として描いたときに、Tcでクロスするような相転移を一次転移と呼びます。一方、温度微係数は連続だが(つまりTcで自由エネルギーが滑らかにつながっている)、「自由エネルギーの温度による二階微分が不連続な相転移」を二次相転移と呼んでいます。

自由エネルギーの温度微係数はエントロピーですから、一次相転移の場合はTcでエントロピーが不連続に変化することになり、エントロピー変化に比例した潜熱が発生し、一般に温度の上げ下げでヒステリシスを示します。固体液体間の転移(氷が解ける等)等がこれにあたります。

二次転移の場合は微係数は連続なので、潜熱は発生しませんが、二次微係数に比例した比熱には不連続が現れます。磁場が無いときの超伝導転移や多くの磁気相転移はこれにあたります。
    • good
    • 5
この回答へのお礼

本当に有難うございます。感謝の限りです。御丁寧に例まで書いていただいて、
とてもわかり易かったです。

お礼日時:2002/01/29 22:16

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q1次相転移と2次相転移

今、過冷却現象について勉強していたのですが、
そこで出てきた1次相転移とは何ですか?
また2次相転移とは何ですか?
教えてください!!

Aベストアンサー

どのくらい過冷却するかは、現実には物質固有の性質ではなく、実験条件で決まっています。

過冷却している状態というのは平たくいうと、本来は固体が安定なのに、「準安定」な状態として液体でいる状態です。例えば、床にあるボールを丼に入れて持ち上げたとします。このとき、ボールの位置エネルギーは床にいるときが一番小さく安定ですが、丼の底もそれなりに安定です。しかし、丼がゆすられるとボールはより安定な床に向けて落ちていきます。過冷却状態の液体は、この丼の底のボールのような状態にあります。この際の位置エネルギーに相当するエネルギーは「自由エネルギー」と呼ばれています。

過冷却状態から固化するには、丼のふちまでのエネルギーの壁を何らかの擾乱(例えば温度の揺らぎ)で超えないといけませんが、鉛はスズに比べて融点が高いので、炉に供給される電力が少し変化しても、温度揺らぎが大きくなるのが主な原因だと思います。(エネルギーの壁の高さは物質固有の側面も持っているので、これだけだと思われるとちょっといけませんが。)

ちなみに、過冷却状態からの固化は容器と接している部分から始まります。スペースシャトルで浮遊した状態で同じ実験をしたらすごく過冷却するはずです。

相転移に関しては以前回答したことがありますので(参照URL)ご参考になれば幸いです。でも一次相転移、二次相転移を理解するには「自由エネルギー」の概念がないといけません。まずは熱力学の本を参照するのが良いと思います。

参考URL:http://oshiete1.goo.ne.jp/kotaeru.php3?q=207621

どのくらい過冷却するかは、現実には物質固有の性質ではなく、実験条件で決まっています。

過冷却している状態というのは平たくいうと、本来は固体が安定なのに、「準安定」な状態として液体でいる状態です。例えば、床にあるボールを丼に入れて持ち上げたとします。このとき、ボールの位置エネルギーは床にいるときが一番小さく安定ですが、丼の底もそれなりに安定です。しかし、丼がゆすられるとボールはより安定な床に向けて落ちていきます。過冷却状態の液体は、この丼の底のボールのような状態にあります...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Qエタノール水溶液からエタノールを100%取り出すことは可能?

エタノール水溶液からエタノールを100%取り出すことは可能のようですが、具体的にはどのような方法をとるのでしょうか?また、それは蒸留でも可能なのでしょうか?特殊な蒸留では可能だと聞いて調べてみましたがよくわかりませんでした。

Aベストアンサー

 水とエタノールの完全な分離というか、エタノールの完全な脱水は、共沸と言う現象のために単純な蒸留だけでは理論的に不可能です。

 共沸についてはblackdragonさんの回答にあるリンク先に説明があったと思いますし、gooなりgoogleなりで検索して頂ければ直ぐに見つかると思います。(詳しくは、物理化学や化学工学の教科書をご覧下さい。)

 そこで、特殊な蒸留方法ですが、一つは既に回答があるベンゼンを使った三成分系での共沸蒸留方法です。そのほかには、膜をや分子の拡散を使った方法などがあります。

 しかし、工業的に必要な大容量を生産するのではなく、実験室レベルでよいのなら、より一般的な方法としては、活性化させたモレキュラーシーブスを用いた脱水では無いでしょうか?
 乾燥させた不活性ガス雰囲気下で蒸留したエタノールに十分活性化させたモレキュラーシーブスをいれて不活性ガスで密封する方法です。
十分活性化させたとは、モレキュラーシーブスを良く洗浄した後に減圧下~250℃以上で数時間加熱し、減圧条件下で室温に戻して使用するということです。この加熱~冷却の操作を数回繰り返せばより活性があがります。
 ちなみに、昔どこかで、モレキュラーシーブスの乾燥には電子レンジを使って加熱していたと言う話も聞いたことがあります。

 なお、純粋なエタノールを取り出すときには、水のほかにもエタノールが酸化したアセトアルデヒドや酢酸などの不純物の除去も必要になります。

 水とエタノールの完全な分離というか、エタノールの完全な脱水は、共沸と言う現象のために単純な蒸留だけでは理論的に不可能です。

 共沸についてはblackdragonさんの回答にあるリンク先に説明があったと思いますし、gooなりgoogleなりで検索して頂ければ直ぐに見つかると思います。(詳しくは、物理化学や化学工学の教科書をご覧下さい。)

 そこで、特殊な蒸留方法ですが、一つは既に回答があるベンゼンを使った三成分系での共沸蒸留方法です。そのほかには、膜をや分子の拡散を使った方法などがあり...続きを読む

Q分光化学系列と配位子場分裂 高スピンか低スピンか?

只今錯体の勉強をしています。
配位子場理論において、金属と配位子の軌道の相互作用によって、配位子場分裂(Δ)することはわかりました。この時の「エネルギーΔ」と、電子が同一軌道にスピン対をつくって入る際の「電子間反発エネルギー」の大小により、金属のd軌道の電子配置が高スピンになるか低スピンになるか、理解することはできました。

配位子場分裂(Δ)の大きさは、分光化学系列に則った配位子の違いによるものと記憶しています。

また一般に第一遷移金属元素に比べ第二、第三の方が低スピンになると教科書(シュライバーよりかなり大まかです)には書いてありました。

ここで疑問なのですが例えば、[Co(en)3]3+という錯体について考えたとき、Δ及び電子間反発エネルギーの具体的は値、または大小関係が分からなくても、分光化学系列と第何遷移金属といった情報だけで、Coのd軌道の電子は高スピン、低スピンどちらか分かるものなのでしょうか?

つまるところ、金属の種類ごとに、分光化学系列で真ん中(H2O)辺りより左側の配位子は低スピンになる~といったaboutな予測はできないのでしょうか?

また、もう一点、分光化学系列は大まかにC>N>O>Xとなっていますが、なぜでしょうか?配位子と金属のπ軌道の相互作用という面では理解できましたが、以下の説明がわかりません。
「配位子の電気陰性度が増加し、金属にσ供与するエネルギー準位が低下するので、この軌道と金属のσ対称性のeg*軌道とのエネルギー差がC,N,O,Xの順に大きくなり、その結果軌道相互作用が小さくなってΔが小さくなる」

大変長く、またわかりにくい文章となってしまいましたが回答お願いします。

只今錯体の勉強をしています。
配位子場理論において、金属と配位子の軌道の相互作用によって、配位子場分裂(Δ)することはわかりました。この時の「エネルギーΔ」と、電子が同一軌道にスピン対をつくって入る際の「電子間反発エネルギー」の大小により、金属のd軌道の電子配置が高スピンになるか低スピンになるか、理解することはできました。

配位子場分裂(Δ)の大きさは、分光化学系列に則った配位子の違いによるものと記憶しています。

また一般に第一遷移金属元素に比べ第二、第三の方が低スピンに...続きを読む

Aベストアンサー

> 金属の種類ごとに、分光化学系列で真ん中(H2O)辺りより左側の配位子は低スピンになる~といったaboutな予測はできないのでしょうか?

できます。

配位子の分光化学系列ほど有名ではありませんけど、金属イオンの分光化学系列というものがありまして

 Mn2+ < Ni2+ < Co2+ < Fe2+ < V2+ < Fe3+ < Co3+

の順で配位子場分裂Δが大きくなります。[Co(en)3]3+について考えると、Co3+はΔが大きくなるイオン、enはΔがそこそこ大きくなる配位子なので、[Co(en)3]3+は低スピン錯体になることがわかります。

おおざっぱには
 Mn2+はNO2とCNの間、
 Co2+はphenとNO2の間、
 Fe2+はenとbpyの間、
 Fe3+はH2Oとenの間、
 Co3+はFとH2Oの間、
に高スピン錯体と低スピン錯体の境界線があります。

Mn3+とCr2+はヤーン-テラー効果のために正八面体構造からずれるので少し厄介で、これらのイオンはふつう金属イオンの分光化学系列には含めません。Mn3+では高スピンになる錯体がほとんどで、低スピンになるのは[Mn(CN)6]4-くらいです。Cr2+では、[Cr(en)3]2+が高スピン、[Cr(bpy)3]2+が低スピンになるので、Fe2+とだいたい同じところに境界線があると考えればいいです。Ni3+は、事実上すべて低スピン錯体になります。

> 分光化学系列は大まかにC>N>O>Xとなっていますが、なぜでしょうか?

配位子のπ軌道と金属のd軌道との相互作用のためです。金属にσ供与する軌道のエネルギー準位の違いは、分光化学系列にはあまり影響しません。このことは、ハロゲンの順序が F>Cl>Br>I になっていることから分かります。もしσ供与する軌道のエネルギー準位の違いが分光化学系列を決めているのならば、I>Br>Cl>Fの順になるはずです。ふつうは、「F→Iの順にΔが小さくなるのは、F→Iの順にπ供与性が強くなるからだ」という説明がなされます。

> 以下の説明がわかりません。
> 「配位子の電気陰性度が増加し、金属にσ供与するエネルギー準位が低下するので、この軌道と金属のσ対称性のeg*軌道とのエネルギー差がC,N,O,Xの順に大きくなり、その結果軌道相互作用が小さくなってΔが小さくなる」

金属にσ供与する配位子のエネルギー準位は、金属のd軌道よりも低いところにあります。配位子のエネルギー準位が低くなれば低くなるほど、金属のd軌道とのエネルギー差が大きくなるので、軌道相互作用が小さくなってΔが小さくなります。配位子のエネルギー準位は配位子のイオン化エネルギーの符号を変えたものなので、配位子の電気陰性度が増加するほど低くなります。

> 金属の種類ごとに、分光化学系列で真ん中(H2O)辺りより左側の配位子は低スピンになる~といったaboutな予測はできないのでしょうか?

できます。

配位子の分光化学系列ほど有名ではありませんけど、金属イオンの分光化学系列というものがありまして

 Mn2+ < Ni2+ < Co2+ < Fe2+ < V2+ < Fe3+ < Co3+

の順で配位子場分裂Δが大きくなります。[Co(en)3]3+について考えると、Co3+はΔが大きくなるイオン、enはΔがそこそこ大きくなる配位子なので、[Co(en)3]3+は低スピン錯体になることがわかります。
...続きを読む

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q大学院別のTOEICの合格点を教えてください。

大学院入試でTOEICの点数を英語の点数として換算している大学院が多くあると知ったのですが大学院別にどのぐらいが合格点なのでしょうか?
東大の院生の平均点が730というデータはネットでみたのですが他のいろいろな大学院について教授からや友達からの情報でもいいので参考にさせてください。

Aベストアンサー

このサイトに、大学院入試でTOEIC(R)Testを活用する52の大学院が、
国公立、私立別で掲載されており、
ある一定のスコアで、英語の独自試験免除など、詳しい情報が見れます!

参考URL:http://www.toeicclub.net/graduateschool.html

Q誘電率の周波数依存性

物質の誘電率がある特定周波数と共振して急激に増加する
という現象はありますか?
また、それに関する情報を教えていただけたら幸いです!

Aベストアンサー

あります。

http://hr-inoue.net/zscience/topics/dielectric1/dielectric1.html

Qヤーンテラー効果について

ヤーンテラー効果について勉強したのですがよく分かりません。もし分かりやすく説明してくれる方がいればよろしくお願いします。

Aベストアンサー

Jahn-Teller効果ですか.むずかしいですよね~.ということで,「わかりやすく,イメージをつかむ」というのをモットーに(!?),ここではJahn-Teller効果の一例である「正方晶ひずみ」のお話をします.


正方晶ひずみをチョー簡単に言ってしまえば,
「Cu錯体がなぜ正方形配位型なのか」
を説明したものなのです.

じゃあ,なんでそうなるのっ?(古っ!)って思いますよね.そこで,結晶場理論をもとにこれを説明します.


そもそも,d錯体って,八面体配位であるか,四面体配位ですよね(ただ,四面体配位は例が少ないので省略します).例えば,Fe錯体なんかはたいてい八面体配位(配位子が6個)って教わりましたね.しかし,Cu錯体やPt錯体などはなぜか正方形の配位をとります.本来であれば,八面体配位をとったほうがよさそうな感じがしますよね.だって,FeとCuって電子が3つしか違わないから.

ここで,Jahn-Teller効果にもとづく正方晶ひずみという効果が生じてきます.これって何かというと,z軸方向の配位距離(金属と配位子との距離)が伸び,xy方向の配位距離が縮まるのです.つまり,八面体を横からグシャッとつぶして縦にビヨーンと引っ張った感じになります.

このような傾向は,d軌道の電子が多いほど起こりやすくなります.
こうやって,もしもz軸方向の配位距離が無限に伸びてしまったら?そう,z軸方向の配位子はどっかに飛んでいってしまい,結果として正方形状に並んだ4つの配位子だけが残ります.

つまり,「Cu錯体が正方形配位であるのは,八面体がひずんでz軸方向の配位子がなくなったからである」といえましょう.


しかし,「なんでd軌道の電子が増えるとz軸方向に伸びるの?」と思われますよね.これは電子軌道理論で説明できます.
八面体のときは,d軌道は3:2に分裂してますよね.低エネルギーで縮退している3軌道はdxy,dyz,dzxで,高エネルギーのそれはd(xx-yy),dzzです.さて,d軌道の電子が増えると,実は二重および三重に縮退していた軌道が分裂して,2:1:1:1とこま切れになってしまいます.具体的には,z因子を含む軌道(dyz,dzx,dzz)の3つのエネルギーが低下します.(なんでそうなるのかについてはムズカシイので省略させてください)


う~ん,なにやらムズカシイお話になってしまいましたね.
でも,「d軌道の縮退が変化する=配位の形も変化する」ということはなんとなく予想できますよね.これを理論的に説明したのがJahn-Teller効果です.


こんな稚拙な説明でわかっていただけたでしょうか.
もし,「この文章のここがよくわからない」などがありましたら,補足をお願いいたします.また,これ以上の内容についてはShriver(シュライバー)著『無機化学』p.354あたりに書いてあるので,そちらをご覧ください.

Jahn-Teller効果ですか.むずかしいですよね~.ということで,「わかりやすく,イメージをつかむ」というのをモットーに(!?),ここではJahn-Teller効果の一例である「正方晶ひずみ」のお話をします.


正方晶ひずみをチョー簡単に言ってしまえば,
「Cu錯体がなぜ正方形配位型なのか」
を説明したものなのです.

じゃあ,なんでそうなるのっ?(古っ!)って思いますよね.そこで,結晶場理論をもとにこれを説明します.


そもそも,d錯体って,八面体配位であるか,四面体配位ですよね(ただ,四...続きを読む

Q分配関数(状態和)がわかりません。

統計力学とかで出てくる分配関数(状態和)がありますが、物理的な意味がよくわかってません。
Σexp(-β・ei)とありますがどういう意味なんでしょうか?

またある問題でエネルギー準位ε=(n+1/2)hνのN個の独立な調和振動系子の系があり
この調和振動子一個に対する状態和が
Z=1/{2sinh(hν/2kB・T)}
となることを示せという問題があるんですが問題の意味すらよくわかりません。
一個に対する状態和?という感じです。
どうかお願いします。

Aベストアンサー

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというように表すことが出来ますね。
このときの状態和は
 Z=ΣP(x)
  =P(1)+P(2)+…+P(6)
  =6*1/6
  =1
ということになります。

>速度やモーメントならしっくりきますが状態というのは一体何なんでしょうか?
さいころで言うと状態は「1の目が出ること」などに対応します。
この場合は6つの状態を取り得ますね。

>一個に対する状態和?
粒子が一個であっても e_n =(n+1/2)hν という結果を見れば、
基底状態 e_0 = hν/2 の状態にあるかもしれないし、
励起状態の1つ e_1 = (1+1/2)hν = 3/2*hν のエネルギー状態にあるかもしれない、
というようにとり得る状態は1つではないことがわかります。
あとは、先のさいころの例と同様に
e_0 の状態にある確率が exp(-βe_0)
e_1 の状態にある確率が exp(-βe_1)
   :
ですからこれらの確率の無限和をとるだけです。


この質問とは関係ないですが、
その後、相対論の理解は進みましたか?

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというよう...続きを読む


人気Q&Aランキング