人に聞けない痔の悩み、これでスッキリ >>

イデール群の位相と、アデール環の位相からイデール群上に誘導される相対位相が異なるという所で悩んでいます。
違うというのはおぼろげながら分るんですが、どの程度違うものなのかという所で???です。
どなたか教えて下さい。

A 回答 (1件)

Adele ringをA、そのIdeleをA*、そのどちらかの元を(k_v)で表すことにします。

vはplaceです。一般のglobal field上で話を進めます。
両者の位相の違いは(k_v)∈A*→(1/k_v)∈A*が連続になるかならないかの違いと言ってよいと思います。相対位相では連続になりません。すなわちAdeleからの相対位相では開集合が少ないということです。これを連続にしてかつAdeleからの相対位相を含む最小の位相がIdele位相だと記憶しています。ここではなぜ連続にならないかを簡単に説明したいと思います。以後Adeleからの相対位相を考えます。そのときIdeleにおける開集合は主に次の形をしています(正確には基本開近傍です):
(Π_{v∈I}E_v ×Π_{v∈I~}o_v)∩A*
ここでIはある有限添え字集合(infinite placeを含む)で各E_vはplace vに対するFの完備化k_vにおける開集合、o_vはk_vにおけるinteger ring(すなわちノルムが1以下の元全体---ご存知かとは思いますがfinite place上ではノルムがちょっと変わっていて1以下としてもそれは開集合です。これはノルムの値が離散的であることから従っています)。
さてinverseが連続だとすればあるA*における開集合がありそのinverseが上で与えた開集合に入っていなければなりません。そこでそのような開集合Pが存在したとしIに属さないplaceに注目します。そのPは再び上のような形をしているのでIに属さないあるplace wとPの元(k_v)が存在し|k_w|<1です。ところがその逆元(1/k_v)はplace wにおいてノルム1より大きい成分を持つので最初に与えた開集合には属しません。従って相対位相ではinverseが連続になるようには開集合がとれないということが分かりました。
懐かしい話題だったので怪しいところもあるかもしれませんが参考にしてください。
    • good
    • 0
この回答へのお礼

素早く回答を下さりありがとうございました.
丁寧なお答えで大体の感触はつかめましたので,
もう一度自分で証明をつけてみれば理解できそうです.
重ねてお礼申し上げますm(_ _)m

お礼日時:2006/10/23 19:16

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q友人から、SGAを読め、といわれましたが、読めません。

数学の大学院の友人から、現代数学の最高峰を知るには、SGAを読め、といわれました。

http://modular.fas.harvard.edu/sga/sga/index.html

などを見てみましたが、フランス語で、1ページも読めません。

数学という学問は、理解が階段式となっているはずで、つまり、わからない内容があれば、前に戻って読み直せば、時間と根気さえあれば、どんな書物でも読みこなせるという、信念みたいなものがありました。

しかし、SGAなるものは、内容も抽象的、かつ、フランス語。

こんなのどんな日本人も読めないだろう、とも思うのですが、ネットや友人や先生には、読んでいる人がいるようなのです。

SGAを読むには、どういったことに心がければよいのでしょうか?やはり、フランス語は知っておかないといけないでしょうか?
また、日本人で、それを読みこなせる人は、何人くらいいるのでしょうか?

Aベストアンサー

うお,SGAとはこれまた懐かしい(^^;;
わざわざネットで見なくても
グロタンディークものなら
数学科図書室にそろってませんか?

>こんなのどんな日本人も読めないだろう、とも思うのですが、ネットや友人や先生には、読んでいる人がいるようなのです。

いや,ふつうにいると思いますよ,
大学の代数幾何の専門の先生なら
読みこなせないとまずいのでは.
#スキームの理論とか層とかコホモロジは
#代数幾何の基本でしょうし

けど,「現代数学の最高峰」かなぁ。。。
今では古典の定番のような気がしますし
「代数幾何」周辺の定番でしかないかもしれません

SGAを見なくても,代数幾何の基礎,
スキーム,エタール空間,コホモロジあたりだと
SpringerのGTMの
ハーツホーンの「Algebraic Geometry」
あたりが入門的な本だと思うし
この本は今年日本語訳が出てます.
和書だと,
宮西正宜,代数幾何学,裳華房
飯高茂,代数幾何学,岩波講座 基礎数学
なんてのも基礎的です


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング