あなたの映画力を試せる!POPLETA映画検定(無料) >>

支圧応力度とはどういうものなのでしょうか?
具体例な例などあげていただくと、ありがたいです・・

A 回答 (2件)

>ゴムの支圧応力度=W/(B2×D2)<8N/mm2(ゴムの圧縮応力)


でよいでしょうか。

それでいいのです。ゴムの厚みは関係ありません。タイヤの入った空気の内圧が増すと設置面積が減り、支圧応力度が増すという関係が成立します。
    • good
    • 0

例えば自動車のタイヤが自重と地面からの反力を受けているとき、その反力を接地面積で割ったものを支圧応力と言います。

但し、正しくは支圧応力度です。日本では応力と応力度をあまり区別しないのです。

この回答への補足

早速の回答ありがとうございます。
具体的に
 幅B1×奥行きD1、厚さtのゴムの上に幅B2、奥行きD2で荷重がWとしますと
ゴムの支圧応力度=W/(B2×D2)<8N/mm2(ゴムの圧縮応力)
でよいでしょうか。
この場合、ゴムの厚さは関係ないのでしょうか。

補足日時:2007/04/25 14:18
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

QHTB 摩擦接合と支圧接合の違い

HTB 摩擦接合と支圧接合の違いを教えてください。さまざまなサイト
をみてるのですが、いまいちピンときません。どこで摩擦力を負担するのか?
どこで支圧を負担するのか?ボルト?スプライス?
教えてください。

Aベストアンサー

摩擦接合は、HTB(高力ボルト)の軸に導入された張力によって、H形鋼などの母材とスプライスの間に生じる摩擦力によって力を伝達する接合方法です。
一方、支圧接合は、主に普通ボルトの接合方法であり、部材からの支圧力に対し、ボルトの軸断面のせん断力で力を伝達する接合方法です。
HTBにおいては、支圧接合とならないよう十分な摩擦力が生じるように本数を配置します。

(参考)計算の基本から学ぶ 建築構造力学 上田耕作・著 オーム社 P163

Qボルトの許容せん断応力について

ボルトの許容せん断応力の求めかたを教えてください。
材料はSS400
ボルトはM20 
です。
計算式だけでもかまいませんのでよろしくおねがいします。

Aベストアンサー

許容応力は「建築基準法」、「鋼構造設計規準(以下、S規)」など各種法令基準で決められていて、それぞれ数値が異なりますし、ボルトの場合、一面せん断か二面せん断か、せん断力と同時に引張力も受けるのか、などでも違ってくるんですが、

ボルトの許容せん断力を求める一番簡単な方法は、S規に基づく次の計算方法だと思います。

SS400の許容せん断応力度f=0.7 ton/cm^2・・・S規で決まってます。

このfの値にボルトの軸の断面積(M20であればA=3.14cm^2)を掛ければ、許容せん断力(A×f=2.198ton)が求まります。

なお、この値は長期荷重に対する許容値で、風荷重等の短期荷重に対しては1.5倍
することができます。

こんなんでどうでしょうか?

ちなみに、

http://www.kawasaki-steel.co.jp/binran/index.html

にその他いろいろデータが載ってます。

参考URL:http://www.kawasaki-steel.co.jp/binran/index.html

許容応力は「建築基準法」、「鋼構造設計規準(以下、S規)」など各種法令基準で決められていて、それぞれ数値が異なりますし、ボルトの場合、一面せん断か二面せん断か、せん断力と同時に引張力も受けるのか、などでも違ってくるんですが、

ボルトの許容せん断力を求める一番簡単な方法は、S規に基づく次の計算方法だと思います。

SS400の許容せん断応力度f=0.7 ton/cm^2・・・S規で決まってます。

このfの値にボルトの軸の断面積(M20であればA=3.14cm^2)を掛け...続きを読む

Q引張応力とせん断応力の合成応力?

物体に,引張応力とせん断応力がかかっている場合に破壊するかどうかを調べる場合は,引張応力を単独で,せん断応力を単独で,許容応力以下かどうかを調べるだけでいいのでしょうか?
引張応力とせん断応力を合成した応力が存在し,それが許容応力以下かを調べる必要があるのでしょうか?
その場合は,計算方法も教えて欲しいです.

Aベストアンサー

1>物体に,引張応力とせん断応力がかかっている場合に破壊するかどうかを調べる場合は,

2>引張応力を単独で,せん断応力を単独で,許容応力以下かどうかを調べるだけでいいのでしょうか?

考え方のアドバイスを!!

1:破壊するかどうかは、No1さんのおっしゃている降伏条件等を用いて調べます。

2:許容応力は、弾性範囲の実務的な設計で採用されることの多い概念ですので、安全率がかけてある場合が多いです。

許容応力=破壊応力x安全率

ですから、「許容応力を超える」と「破壊する」は同義語ではありません。

一般的な許容応力法の検討では、

3次元物体には、3方向(x、y、z)の材軸が存在します。この物体に3方向の軸力と剪断力が同時に作用する場合、この物体に生じる最大応力は、
σmax=√(σx^2+σy^2+σz^2+3τ^2)
で求めることができます。

もし、同時に剪断力を受ける物体が細長い物体で、1方向(x方向)にのみ引張りが生じているならば、
σy=σz=0
となって、
σmax=√(σx^2+3τ^2)
で計算することができます。この最大応力が許容応力を超えないことを確かめます。

多少、簡単に書きすぎたかもしれませんが、基本的な流れとしては、合っていると思います。
また、破壊についても基本的な考え方は同じですが、式の表現方法が多少異なり、より詳細な表現がされ、比較の対象が「許容応力」ではなく「降伏応力」になります。

詳しくは、応力テンソル、ミーゼス、トレスカなどのキーワードをgooなどで検索すると詳しい説明のあるサイトを見ることができます。

1>物体に,引張応力とせん断応力がかかっている場合に破壊するかどうかを調べる場合は,

2>引張応力を単独で,せん断応力を単独で,許容応力以下かどうかを調べるだけでいいのでしょうか?

考え方のアドバイスを!!

1:破壊するかどうかは、No1さんのおっしゃている降伏条件等を用いて調べます。

2:許容応力は、弾性範囲の実務的な設計で採用されることの多い概念ですので、安全率がかけてある場合が多いです。

許容応力=破壊応力x安全率

ですから、「許容応力を超える」と「破壊する...続きを読む

Q軸方向圧縮応力度について

とても、基本的なことで申し訳ありません。

軸方向圧縮応力度とは、いったいなんでしょう?

大きいと、どうなりますか?
小さいと、どうなりますか?

初歩的なことで申し訳ありません、よろしくおねがしいます。

Aベストアンサー

今日は cyoi-obakaです。

軸方向圧縮応力度とは、柱を想定して説明すると、判り易いと思いますので、以下に記述します。

柱の上から、ある力 P(外力)が作用した場合に、柱の断面積 A に生じる単位面積あたりの力の事です。
軸方向圧縮応力度 σc = P / A で表します。
従って、軸方向圧縮応力度が少ないという事は、柱の断面積に対して作用する力が少ないという事に成ります。

さて、材料には、許容圧縮応力度 σ (法で決められた値)というものがあります。
これは、材料に与えられている単位面積あたりの強さを示すものです。
通常、構造計算において、σc ≦ σ である事で、その安全を確認します。

また、圧縮応力度以外に、曲げ応力度、引張応力度、剪断応力度など、外力の種類によって種々の応力度が存在し、
同様に許容曲げ応力度、許容引張応力度、許容剪断応力度等が決められています。

以上、参考になりますか?

Qコンクリートの単位容積重量はいくらぐらい?

一般的なコンクリート塊の単位容積重量はおよそどれぐらいですか。
できたら、Kg/立方mで教えてください。

Aベストアンサー

コンクリートの単位容積重量(正式には単位容積質量)はコンクリート中の
砂、砂利、の質量とコンクリートの乾燥具合によって変わってきます。

現在日本で使われてるセメント、砂、砂利の比重から考えて2300~2400Kg/立方m
と考えて良いでしょう。

特殊な用途があれば軽いコンクリート、重いコンクリートも作ることが出来ます。
元生コンクリート技術に従事していました。

Q台形の重心を求めるには

上底a 下底b 高さ h とした場合、台形の重心をもとめる公式は、 (2a+b)/(a+b)*h/3 でよろしいでしょうか?

Aベストアンサー

計算してみました。
面積
 A=(a+b)h/2
下底周りの断面一次モーメント
 S=a・h^2/2 + (b-a)h^2/6
  =h^2(2a+b)/6

重心位置、S/Aですから、
 G=(2a+b)/(a+b) ・ h/3

合ってますね。

Q鋼材のせん断強度√3の意味について

鋼材のせん断強度だけF/1.5√3と
√3が係数として掛かってます。
他の、圧縮・引張・曲げには√3の係数
はかかりません。
なぜ、せん断だけ√3の係数が掛かるのか
分かる方教えて頂けませんか?

Aベストアンサー

基本的には、yu-foさんの回答3で良いと思います。

物体の多軸応力に対する降伏条件の説の中で、von Mises の剪断ひずみエネルギー説があります。
3次元物体の主応力をσ1、σ2、σ3としたときの降伏条件は、
単軸引張に対する降伏応力度をσy、とすると、
剪断応力度は主応力の差に比例するので、
σy^2=1/2・((σ1-σ2)^2+(σ1-σ3)^2+(σ2-σ)^2))・・・(1)
であらわすことが出来ます。

ここで、鉄骨造に用いる鋼材はほとんど板材のの組み合わせなので、2次元つまり、平面応力とみなすことができ、
σ3=0・・・(2)
とする事ができます。
また、純剪断状態を考慮すれば、主応力が全て剪断であると考えられるので、
σ1=(-σ2)=τ・・・(3)
と置けます。

(2),(3)を(1)に代入して計算すると、
σy^2=3τ^2・・・(4)
となります。

(4)を変形して
τ=σy/(√3)
となります。

つまり、√3は、vonMisesの剪断ひずみエネルギー説に基づいた降伏理論によって導かれた数値です。

基本的には、yu-foさんの回答3で良いと思います。

物体の多軸応力に対する降伏条件の説の中で、von Mises の剪断ひずみエネルギー説があります。
3次元物体の主応力をσ1、σ2、σ3としたときの降伏条件は、
単軸引張に対する降伏応力度をσy、とすると、
剪断応力度は主応力の差に比例するので、
σy^2=1/2・((σ1-σ2)^2+(σ1-σ3)^2+(σ2-σ)^2))・・・(1)
であらわすことが出来ます。

ここで、鉄骨造に用いる鋼材はほとんど板材のの組み合わせなので、2次元つまり、平面応力とみなすことができ、
σ3=...続きを読む

Q鋼材の断面積について

H鋼やチャンネルのような鋼材の断面積について質問です。引張強さを定義する時の有効断面積Anとせん断応力を定義する時の面積Awの違いは何ですか?また、Awの方はウェブだけでフランジが含まれていませんし、鋼管のAwはA/2(πD^2/8?)でいくらなんでも広すぎるような気がします。これらはなぜですか?

Aベストアンサー

断面に対して垂直な力(引っ張り力)と断面に平行な力(せん断力)の断面内の伝わり方(?)の違いです。

引っ張り力では、断面の形状にかかわらず、ほぼ、全体に均等に力が分布しますが、
せん断力では、断面の形状によって、力が分布が変化します。

H型鋼にせんだん力がかかった場合、大部分の応力をウェブが負担するので、Awはウェブ面積ですが、
鋼管では、応力の分布が断面全体で徐々に変化して、最大の箇所では平均の応力の2倍になるので、Aw=A/2という定義になっています。
http://ebw.eng-book.com/heishin/vfs/calculation/VerticalShearingStress/

Q断面2次モーメントと断面係数の違い

断面2次モーメントと断面係数の違いなんですが

断面2次モーメントとは、部材の変形のしにくさを表して、断面2次モーメントが大きいと、たわみにくく座屈しにくいことを示す。
それに対して断面係数は、部材の曲げ強さを表し、断面係数が大きいと曲げに対して強いことを示す。

なんですが、思うにたわみにくさと曲げ強さはイコールではないのですか?

断面2次モーメントが大きいと曲げに対しても強い。
断面係数が大きくてもたわみににくい。

とはかならずしもならないのでしょうか?
いまいち区別してる意味がよくわかりません
ご教授くださいませんか

Aベストアンサー

先ず,「曲げ強さ」と「たわみにくさ」から整理しましょう。

     +-- M --+ 
     ↑T        ↓C
P → =------=   →δ
    |A    |   B|
    |   J    J  |
    |          |
(絵が巧く書けません)
荷重(P)によって,曲げモーメント(M)が生じる。
曲げモーメントは,材料の左と右に引張力(T)と圧縮力(C)を生じさせる。
(A)部分(=)は引張強度を超えた時に破壊し,(B)部分(=)は圧縮強度を超えた時に破壊する。

この時,(A)部分の負担する力(T)が同じならば,(A)の面積(=)が大きい程破壊しにくい。又,中心点からの距離(J)が大きいと破壊しにくい。簡単に言ってしまえば,この時の(A)の面積と距離(J)を掛けたものが,曲げ外力に抵抗する抵抗曲げ強度を決めるための係数,即ち,断面係数(Z)です。

つまり,曲げ強度に影響を与える断面係数は,材料の材質,強度,変形などに関係なく,形状と距離だけで決まります。

一方,(A)部分に作用した引張力(T)は,(A)部分を伸ばす,即ち,変形させます。この時の変形量は,フックの法則によって,形状,距離に加えてヤング係数によって決まります。
この時,変形量は断面の外縁が最も大きく,中心位置に近いほど小さくなります。この時の形状の変化率を表すのが断面2次モーメントです。
(A)部分が引張によって伸び,(B)部分が圧縮による縮んだ結果,この材料はδ方向に変形します。この変形量がたわみです。

つまり,断面係数と断面2次モーメントは,公式は似ていますが,断面係数は曲げ抵抗強度に関する量であり,断面2次モーメントは変形率に関する量であって,お互いに全く関連性のない形状に関する係数です。

// たわむ=まがる
は,変形に関するもので,強度とは関係有りませんので,断面2次モーメントにだけ関係する語句です。(たくさん曲がっても=たわみが大きくても,破壊するとは限らない。)

これを踏まえて,

// たとえば
// I>Zの場合だと割り箸のようにたわみにくいけど折れやすく
// I<Zの場合だと釣竿のようにたわみやすいけど折れにくい
// とかだとイメージできるんですが

というのは,上記の断面係数と断面2次モーメントの理屈から言うと,正解とは言えませんが,結果的に,強度とたわみの関係を言い表している,とっても素敵な例として有効だと思います。(今後,私にも使わせてください。)

この例の(I)を,曲げ剛性(EI)と言い換えれば,強度と変形の関係を表す例として完璧かもしれません。つまり,変形=たわみの話をする時,(I)が単独で使われることはなく,常に一組の概念として,曲げ剛性(K=EI)として使われる,と言うことです。

これらの断面に関する諸量は,構造力学や材料力学において,数学的に積分を用いて説明され,イメージとして説明されることはほとんど有りません。ですから,実際に計算する事は出来ても,どのようなイメージかと聞かれると答えに窮して仕舞うのも仕方ない事だと思います。私もその一人ですが・・・

どちらにしても,断面係数と断面2次モーメントの関連性について,1級建築士でもイメージする事が難しい概念ですから,イメージ化して素人に説明するのは,多少無理があると思います。

先ず,「曲げ強さ」と「たわみにくさ」から整理しましょう。

     +-- M --+ 
     ↑T        ↓C
P → =------=   →δ
    |A    |   B|
    |   J    J  |
    |          |
(絵が巧く書けません)
荷重(P)によって,曲げモーメント(M)が生じる。
曲げモーメントは,材料の左と右に引張力(T)と圧縮力(C)を生じさせる。
(A)部分(=)は引張強度を超えた時に破壊し,(B)部分(=)は圧縮強度を超え...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

価格.com 格安SIM 料金比較