1=0.99999....は本当?
1つの実数を一意的に表現できなくていいのかな?
実数が連続であることとなにか関係があると聞いたことがあります。
わかりやすく説明していただけないでしょうか。

このQ&Aに関連する最新のQ&A

ゲーム 数学」に関するQ&A: 数学ゲーム

A 回答 (12件中11~12件)

私も同じようなことでかなり悩んだことがあります。


なんでこれがイコールなの!?って食い下がったら、
説明をしてもらえました。

1 = 3/3 = 1/3 *(掛ける)3 = 0.33333・・・・ * 3 = 0.99999・・・・

ということです。
イコールだという証明ができてしまいました。

が、根本的になにかおかしいような気持ちがかなり残りました。
これは、10進数の限界なのだと言われました。
10進数の世界ではこういうことが起こってしまう。
でも他の16進数だとかにしても、なにか矛盾みたいなものは
違う形で起こるだろうと。

そして、
そもそも、数学というものは、
「数で起きる様々な現象をみるもの」
だと教わりました。

それでなんとなくわかりました。
数というのは絶対だと思っていたのですが、違うようです。
数の世界でもいろいろなことが起こりうるようです。
数学は、数のゲームなんだと思いました。

「数術士伝説」という本を読みました。
難しいところもありましたが、「数のゲーム」だとかいうことが
なんとなくわかったような気がしました。
http://www.geocities.co.jp/Technopolis/4625/
    • good
    • 0
この回答へのお礼

なるほど。2進、10進、16進数、等々いろいろ表現方法がある
というところにもなにかあるような気がします。
(私が質問で言っている「一意的」は、たとえば10進数で一意という意味です。)
「数術士伝説」今度読んでみます。
ありがとうございました。

お礼日時:2001/01/25 11:26

No.21512を参照してみては?

    • good
    • 0
この回答へのお礼

ありがとうございます。読んでみました。
ですが、私の知りたいことはもう少し本質的な部分なんです。

お礼日時:2001/01/25 11:11

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q分数の連立方程式の解き方を教えてください。

分数の連立方程式の解き方を教えてください。
 a=4500000+60000/260000b
 b=4250000+30000/180000a

Aベストアンサー

[問題] は
 a = 4500000 + (60000/260000)b
 b = 4250000 + (30000/180000)a
なのですね。

ならば、
 a = 4500000 + (60000/260000)b   (1)
   ↓ 代入して、
 b = 4250000 + (30000/180000)a
  =4250000 + (30000/180000){4500000 + (60000/260000)b}
を、まず解くのでしょう。

b の項を左に集めれば、
 b - (30000/180000)(60000/260000)b = 4250000 + (30000/180000)4500000
 b(25/26) = 4250000 + 750000 = 5000000
 b = 200000*26 = 5200000   (2)

ここで (1) へ戻り、
 a = 4500000 + (60000/260000)*5200000
  = 4500000 + 60000*20
  = 4500000 + 1200000
  = 5700000

…かな?
検算してみて頂戴。。
  

[問題] は
 a = 4500000 + (60000/260000)b
 b = 4250000 + (30000/180000)a
なのですね。

ならば、
 a = 4500000 + (60000/260000)b   (1)
   ↓ 代入して、
 b = 4250000 + (30000/180000)a
  =4250000 + (30000/180000){4500000 + (60000/260000)b}
を、まず解くのでしょう。

b の項を左に集めれば、
 b - (30000/180000)(60000/260000)b = 4250000 + (30000/180000)4500000
 b(25/26) = 4250000 + 750000 = 5000000
 b = 200000*26 = 5200000   (2)

ここで (1) へ戻り、
 a = 4500000 + ...続きを読む

Q0~1の間にある実数と実数全体にある実数の個数は同じ?

「0~1の間にある実数と実数全体にある実数の個数は同じ。」・・少しニュアンスが違うかも知れませんが、先日数学の先生がこんなことを話してくれました。このことを先生は次のように説明してくれました。数直線上の0~1を半球面とみたて、その半球面上に光源をおき光を放射する。すると半球面上に一対一で光源が実数に対応する。次いで0~1の範囲で作った半球面を取り除けば実数全体にその光源が対応し、よって0~1の間にある実数と実数全体にある実数の個数は同じになる。この話を聞いて、なんだかだまされているような気がしました。本当に「0~1の間にある実数と実数全体にある実数の個数は同じ。」といえるのでしょうか?他にこれを証明する方法を知っている方いらっしゃったら教えてください。

Aベストアンサー

正しくは「濃度が等しい」と言います。

下記URLには実数vs実数は出ていませんが、濃度に関してはわかりやすいかと思います。

参考URL:http://www.gcc.ne.jp/~narita/prog/math/01/

Q連立方程式の解き方がいまいちぱっとしません だいたいの連立方程式は右図のようにしますがこの問題のよう

連立方程式の解き方がいまいちぱっとしません だいたいの連立方程式は右図のようにしますがこの問題のように勝手に足し合わしたりしていんでしょうか。

Aベストアンサー

肝心な数学の基礎が全く脱落しているようです。中学校一年の数学の教科書を取り出してしっかり復習しましょう。
・・・冗談でも嫌味でもなく、本当に大事なところが抜けてしまっている・・・深刻です。

小学校の算数から中学の数学になったときに計算が大きく変わりましたね。
1) 引き算は、その数の負数を加えること。
  負数とはその数に加えると0になる数
2) 割り算は、その数の逆数をかけ合わせること・
  逆数はその数にかけると1になる数
・・・この二つのことで、未知数であっても初めて計算が自由に扱えるようになった。
 小学校では、5個×3=15本だったし、3-2≠2-3、2÷3=3÷2だったのが、
       5(本)×3 = 3× 5 (本)、3+(-2)=(-2)+3、2×(1/3) = (1/3)×2
3) 両辺が=の関係である時、両辺に同じ処理をしても=の関係は変わらない。
 2x - 4 = 6  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄★
すなわち
 2x + (-4) = 6
  両辺に 4を加えると
 2x + (-4) + 4 = 6 + 4
 2x = 10      結果であるテクニックとしての[移項]は知っている
  両辺に(1/2)をかける
 2x × (1/2) = 10 × (1/2)
  交換則で
 x × 2 ×(1/2) = 5
  x = 5

たったこれだけを中学一年で一年かけて徹底的に学んだはず・・・中学数学の半分はこれと言ってもよい。
底が抜けているので、いくら解き方を覚えても役には立たない。
 [移項]処理は、「両辺に同じ処理をしても=の関係は変わらない」ことの結果にしか過ぎない。その結果--解き方だけ覚えて、理数科でもっとも肝心な「理由」を身につけてこなかった---でしょ!!!

 だから連立方程式は、未知数を一つずつ消していくという「消去法」というテクニックしか身についていない。繰り返しますが、理科や数学は解き方をいくら覚えても、せいぜい、その時の試験しかパスしない。

例えば、
 a + b = 0
 b - a + c = 0
 a + c - 1 = 0
という式があったとします。どうやって解きますか?
掃き出し法で解いてみましょう。

1) まず、式を下記のように変形します。
  a + b   = 0  一番下の式を加え
 -a + b + c = 0
  a   + c = 1

 2a + b + c = 1 中の式を引く
 -a + b + c = 0
  a   + c = 1
★ 両辺が=の関係である時、両辺に同じ処理をしても=の関係は変わらない。
   ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄★
  ここはわかりますか>>>だってすべての式は=で結ばれている。

 3a     = 1 3で割る
 -a + b + c = 0
  a   + c = 1

  a     = 1/3
 -a + b + c = 0
  a   + c = 1  一番上の式を引く

  a     = 1/3
 -a + b + c = 0  一番上の式を加えて
      c = 2/3

  a     = 1/3
    b + c = 1/3 一番下の式を引く
      c = 2/3

  a     = 1/3
    b   = -1/3
      c = 2/3

 これは「掃き出し法」と言われる解き方で、連立方程式を解く一番たくさん使われている方法です。特にコンピューターで計算しやすいためにコンピュータで解くときは100%この方法です。

 下記に、これを

  1  1  0 = 0
 -1  1  1 = 0
  1  0  1 = 1

と書き直して、簡単にする方法を説明しています。

参考)これってどうやって解くんですか?? - 数学 | 教えて!goo( https://oshiete.goo.ne.jp/qa/9194001.html )

 何度も繰り返しますが、「解き方」を覚えて、それを使って解くのではなく、なぜその方法で解けるのかを理解するようにしましょう。そうすれば、見たことない問題でも解けようになる。公式忘れたって公式をその場で作ればよい。

肝心な数学の基礎が全く脱落しているようです。中学校一年の数学の教科書を取り出してしっかり復習しましょう。
・・・冗談でも嫌味でもなく、本当に大事なところが抜けてしまっている・・・深刻です。

小学校の算数から中学の数学になったときに計算が大きく変わりましたね。
1) 引き算は、その数の負数を加えること。
  負数とはその数に加えると0になる数
2) 割り算は、その数の逆数をかけ合わせること・
  逆数はその数にかけると1になる数
・・・この二つのことで、未知数であっても初めて計算が自由に...続きを読む

Q1-0.37×(1-a)=0.9 がa=0.729....となる理由

1-0.37×(1-a)=0.9 がa=0.729....となる理由
を教えてくださいよろしくおねがいいたします。

Aベストアンサー

1-0.37×(1-a)=0.9

これを展開して整理すると
1-0.37+0.37a=0.9
0.63+0.37a=0.9
0.37a=0.9-0.63
0.37a=0.27
  a=0.27/0.37=0.729729…

Qこの連立方程式の解き方を具体的に教えて下さい(恥ずかしながら忘れてしまいました(泣)) 答えは書いて

この連立方程式の解き方を具体的に教えて下さい(恥ずかしながら忘れてしまいました(泣))
答えは書いてあるのですが、連立方程式の解き方がカットされていて……


よろしくお願いします。

Aベストアンサー

上の式を360倍します。
 2x+3y=4320

下の式は150倍して変形します。
 x+y=1800
 x=1800-y

このxの値を先の式に代入します。
 2(1800-y)+3y=4320
 3600-2y+3y=4320
 y=4320-3600=720

このyの値を3番目の式に代入します。
 x=1800-720=1080

x=1080、y=720です。

Q実数は連続?超越数も実数ですか?

有理数が連続でないことはわかります.
しかし,いろんなところに実数は連続であるということが書いてあります.
ということは,超越数も実数なんですね?
実数が連続であることをわかりやすく説明しているサイトか図書を
ご存知でしたら教えて下さい.
工学系の大卒ぐらいでわかる内容のものがありがたいです.

Aベストアンサー

代数的数と超越数については、

 複素数 α が有理数係数の方程式の解であるとき、代数的数であるという。代数的数の全体を Q^- とかく。代数的数でないような複素数を超越数という。

http://www.juen.ac.jp/math/nakagawa/algres.pdf

と定義されます。実数の連続性は、デデキント(Julius Wihelm Richard Dedekind, 1831~1916, Germany)

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Dedekind.html

の切断という概念によって解明されます。”切断”とは、

 すべての数を A,B の二組に分けて、 A に属する各数を B に属する各数より小ならしめることができたとするとき、このような組分け (A,B) を Dedekind の切断といい、Aを下組、Bを上組という。

(解析概論 改訂第三版 高木貞治著 岩波書店 p3)

ということですが、これによって、実数の連続性、すなわち、

 実数の切断は、下組と上組の境界として、一つの数を確
定する[Dedekind の定理]

(同)

が確定するのです。

参考URL:http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Dedekind.html

代数的数と超越数については、

 複素数 α が有理数係数の方程式の解であるとき、代数的数であるという。代数的数の全体を Q^- とかく。代数的数でないような複素数を超越数という。

http://www.juen.ac.jp/math/nakagawa/algres.pdf

と定義されます。実数の連続性は、デデキント(Julius Wihelm Richard Dedekind, 1831~1916, Germany)

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Dedekind.html

の切断という概念によって解明されます。”切断”とは、

 すべての数を A,B の二...続きを読む

Qこの連立方程式の解き方を教えてください

この連立方程式の解き方を教えてください

Aベストアンサー

分数だから、ややこしく感じるのでしょうね。
上の式は両辺を15倍に、下に式は両辺を12倍してみて下さい。
①、② の様な整数の式になると思います。

3(2x+3y)=150ー5y ・・・①
9xー4(yー3)+12x=60 ・・・②

①を整理すると、6x+9y=150 ・・・③
②を整理すると、21x-4y=48 ・・・④

③、④ ここまでくれば、普通の連立方程式ですから
簡単に解けると思いますが。
 因みに、x=4,y=9 になると思いますが、計算は確認して下さいね。

Qすべての実数xに対して不等式...........

すべての実数xに対して不等式2^(2x+2)+(2^x)a+1-a>0が成り立つような実数aの範囲
の求め方を教えてください。
答えは-8-4√5<a<=1です。

Aベストアンサー

>済みません。回答No.1の(ア)以下の場合分けを
以下の通り訂正します。
2^(2x+2)+(2^x)a+1-a>0
2^(2x)2^2+(2^x)a+1-a>0
4*(2^x)^2+(2^x)a+1-a>0
2^x=yとおくとy>0だから
y>0の範囲で4y^2+ay+1-a>0すなわちy^2+ay/4+(1-a)/4>0
となるaの範囲を求めると
y^2+ay/4+(1-a)/4=(y+a/8)^2-(a^2+16a-16)/64だから
-a/8≦0のときはy=0で4y^2+ay+1-a≧0・・・・・(ア)
0<-a/8のときは-(a^2+16a-16)/64>0・・・・・(イ)
(ア)から-a/8≦0、すなわち0≦aのときはa≦1・・・・・(ウ)
(イ)からはa<0のときはa^2+16a-16=0の解が
a={-16±√(16^2+4*16)}/2=-8±4√5だから
-8-4√5<a<0・・・・・(エ)
(ウ)(エ)の範囲を合わせて-8-4√5<a≦1

Q連立方程式の解き方

 0.8x-0.6y=6500
 
 0.4y-0.2x=1400

の連立方程式の解き方と途中式を教えて下さい。

Aベストアンサー

係数が小数のままだと計算を間違えやすいので、
両辺を10倍なり100倍なりすることにより桁を上げます。

0.8x-0.6y=6500
両辺を10倍すると
8x-6y=65000
両辺を2で割ります。
4x-3y=32500・・・※1

0.4y-0.2x=1400
両辺を10倍すると
4y-2x=14000
みやすいように項を入れ替えます。
-2x+4y=14000
両辺を2で割ります。
-x+2y=7000・・・※2

※1と※2の連立方程式となります。

ここでは加減法で解いてみます。
(※1)+4×(※2)
4x-3y=32500
-4x+8y=28000

5y=60500
y=12100

y=5500を※2に代入
-x+2*12100=7000
-x=-17200
x=17200

よってx=17200,y=12100・・・答え

別解)代入法で連立方程式を解く
※2よりx=2y-7000・・・※3
これを※1に代入
4(2y-7000)-3y=32500
8y-28000-3y=32500
5y=60500
y=12100
これを※3に代入すると
x=2*12100-7000=17200

係数が小数のままだと計算を間違えやすいので、
両辺を10倍なり100倍なりすることにより桁を上げます。

0.8x-0.6y=6500
両辺を10倍すると
8x-6y=65000
両辺を2で割ります。
4x-3y=32500・・・※1

0.4y-0.2x=1400
両辺を10倍すると
4y-2x=14000
みやすいように項を入れ替えます。
-2x+4y=14000
両辺を2で割ります。
-x+2y=7000・・・※2

※1と※2の連立方程式となります。

ここでは加減法で解いてみます。
(※1)+4×(※2)
4x-3y=32500
-4x+8y=28000

5y=60500
y=12100

y=5500を※2に代入
-x+2*12100=7000...続きを読む

Q「c=10^-10でfは全ての実数で連続でx>0で正値をとる時,∫[c..∞]f(x)dxが収束するならばlim[x→∞]f(x)=0」

「c=10^-10でfは全ての実数で連続でx>0で正値をとる時,
∫[c..∞]f(x)dxが収束するならばlim[x→∞]f(x)=0」
の真偽判定問題です。

偽となる反例として
f(x)が底辺が1/n^2の二等辺三角形の側辺を辿るような
ジグザクの折れ線のグラフ(この時lim[x→∞]f(x)は振動)なら
全二等辺三角形の総和はΣ[n=1..∞]1/2n^2で収束と思ったのですがこれはx>0で正値をとる事に
反してしまいます。
やはり,この命題は真となるのでしょうか?

Aベストアンサー

過去に同じ質問がありました。

参考URL:http://oshiete1.goo.ne.jp/qa3653990.html


人気Q&Aランキング