
4×4正方行列A
1/2,-1/2,1,1
1/2,-1/2,-1,-1
0,0,3/2,-3/2
0,0,3/2,-3/2
と
正方行列B
0,1,0,0
0,0,2,0
0,0,0,3
0,0,0,0
のそれぞれの最小多項式を求めたく思ってます。
求め方はA-xE,B-xEに基本行列変形を施して対角行列を求めて4行4列成分に現れた多項式がAの最小多項式になるのかと思います。
A
↓
1/2-x,-1/2,1,1
1/2,-1/2-x,-1,-1
0,0,3/2-x,-3/2
0,0,3/2,-3/2-x
↓
1/2,-1/2-x,-1,-1
1/2-x,-1/2,1,1
0,0,3/2-x,-3/2
0,0,3/2,-3/2-x
↓
1/2,-1/2-x,-1,-1
0,-2x^2,2-2x,2-2x
0,0,3/2-x,-3/2
0,0,3/2,-3/2-x
↓
1/2,0,-1,-1
0,-2x^2,2-2x,2-2x
0,0,3/2-x,-3/2
0,0,3/2,-3/2-x
↓
1,0,0,-1
0,-2x^2,2-2x,2-2x
0,0,3/2-x,-3/2
0,0,3/2,-3/2-x
↓
1,0,0,0
0,-2x^2,2-2x,2-2x
0,0,3/2-x,-3/2
0,0,3/2,-3/2-x
と基本行列変形してみたのですがここから先の基本行列変形は分母にxが現れてしまい,どう進めていいのか困ってます。
そしてBについては
B
↓
-x,1,0,0
0,-x,2,0
0,0,-x,3
0,0,0,-x
↓
1,-x,0,0
-x,0,2,0
0,0,-x,3
0,0,0,-x
↓
1,0,0,0
-x,-x^2,2,0
0,0,-x,3
0,0,0,-x
↓
1,0,0,0
0,-x^2,2,0
0,0,-x,3
0,0,0,-x
とやはりここから先に進めません。
どのようにして求めたらいいのでしょうか?
No.1ベストアンサー
- 回答日時:
こんばんは。
最小多項式を求めるために、いろいろ苦労されて計算されていることが質問から読み取れますが、このまま基本変形を続けても難儀をするだけです。行列式に関する基本的な事柄を忘れているようです。4次正方行列Aに関して
1/2,-1/2, 1, 1
1/2,-1/2, -1, -1
0, 0, 3/2,-3/2
0, 0, 3/2,-3/2
A_11 を
1/2,-1/2
1/2,-1/2
A_12 を
1, 1
-1,-1
A_21 を
0,0
0,0
A_22 を
3/2,-3/2
3/2,-3/2
とすると4次の正方行列Aは4つの2次正方行列
A_11 A_12
A_21 A_22
に区分けされます。このときAの固有多項式を計算すると A_21 が零行列ですから、
|A-xE| = |A_11 - xE|×|A_22 - xE| = x^4
です。よって、Aの固有値は0で、最小多項式は x^4,x^3,x^2,x のいずれかです。これを調べるために A^3 を計算すると A^3≠0 ですからAの最小多項式はx^4です。
ちなみにA^3を計算するのに本当にAを3回かけるのではなく、さきほどの4つに区分けした行列を使ってA^3 を計算してください。行列の区分けに関しては線型代数の教科書を読んでください。
次にBに関してですが、B-xE は
-x,1,0,0
0,-x,2,0
0,0,-x,3
0,0,0,-x
です。このとき
|B-xE| = x^4
となります。三角行列の行列式は対角行列の掛け算です。これは行列式の基本です。ですから、Bの固有値は0で、最小多項式は4,x^3,x^2,x のいずれかです。これを調べるために B^3 を計算すると B^3≠0 ですからBの最小多項式はx^4です。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 線形写像F: F : R^3→R^2 , {x,y,z}→{x+y+3z,2x,3y,4z} ImF 2 2022/10/11 11:21
- 数学 編入試験の勉強中に分からないところがあって困っています。線形写像の表現行列に関する質問です。 1 2023/06/17 11:24
- その他(プログラミング・Web制作) パイソンのプログラミングについての質問です 2 2023/05/22 12:39
- 数学 上三角行列のn乗の証明 2 2023/07/23 21:45
- 数学 3次元実ベクトル空間において, 平面 P:x-y+z+1=0 と直線 L:2(x-1)=-y=-z 3 2022/10/29 14:39
- 数学 『因数に分解するということ』 9 2022/06/27 06:14
- 高校 方程式の証明 5 2022/05/12 09:29
- 数学 数2Bの数列の問題です。 自分は、 まず数列 an=ar^(n-1)と置き こちらの問題の、y= の 1 2022/07/07 16:26
- 数学 線形代数の対称行列についての問題がわからないです。 2 2023/01/08 14:59
- 数学 第15項が31、第30項が61である等差数列{an}について考える。 初項から第n項までの和をsnと 1 2022/03/24 20:43
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
3行3列の行列の和と積の計算...
-
matlabで条件をみたしたデータ...
-
線形代数です。 正方行列A,BがA...
-
数学「行列」の実生活への応用
-
行列式の計算がわかりません。
-
複雑な割り勘の計算方法
-
【数値解析】行列の可約、既約...
-
回転した楕円の長径短径、媒介...
-
Zパラメータの求め方
-
5次の行列式の解き方(固有多項...
-
高校数学で教わる行列っていっ...
-
[☆急いでます!!☆] 基本変形の解...
-
統計数学の問題でノルム1に基準...
-
行列の指数関数
-
四脚場の具体的な行列
-
3Dゲームにおける微分・積分・...
-
逆行列の証明
-
高次の最小2乗法の計算
-
行列式について。 行列式の問題...
-
回転行列の4行4列の意味について
おすすめ情報